2,422 research outputs found

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

    Superballistic Diffusion of Entanglement in Disordered Spin Chains

    Full text link
    We study the dynamics of a single excitation in an infinite XXZ spin chain, which is launched from the origin. We study the time evolution of the spread of entanglement in the spin chain and obtain an expression for the second order spatial moment of concurrence, about the origin, for both ordered and disordered chains. In this way, we show that a finite central disordered region can lead to sustained superballistic growth in the second order spatial moment of entanglement within the chain.Comment: 5 pages, 1 figur

    The Hidden Spatial Geometry of Non-Abelian Gauge Theories

    Full text link
    The Gauss law constraint in the Hamiltonian form of the SU(2)SU(2) gauge theory of gluons is satisfied by any functional of the gauge invariant tensor variable ϕij=BiaBja\phi^{ij} = B^{ia} B^{ja}. Arguments are given that the tensor Gij=(ϕ1)ijdetBG_{ij} = (\phi^{-1})_{ij}\,\det B is a more appropriate variable. When the Hamiltonian is expressed in terms of ϕ\phi or GG, the quantity Γjki\Gamma^i_{jk} appears. The gauge field Bianchi and Ricci identities yield a set of partial differential equations for Γ\Gamma in terms of GG. One can show that Γ\Gamma is a metric-compatible connection for GG with torsion, and that the curvature tensor of Γ\Gamma is that of an Einstein space. A curious 3-dimensional spatial geometry thus underlies the gauge-invariant configuration space of the theory, although the Hamiltonian is not invariant under spatial coordinate transformations. Spatial derivative terms in the energy density are singular when detG=detB=0\det G=\det B=0. These singularities are the analogue of the centrifugal barrier of quantum mechanics, and physical wave-functionals are forced to vanish in a certain manner near detB=0\det B=0. It is argued that such barriers are an inevitable result of the projection on the gauge-invariant subspace of the Hilbert space, and that the barriers are a conspicuous way in which non-abelian gauge theories differ from scalar field theories.Comment: 19 pages, TeX, CTP #223

    Renormalization group transformations on quantum states

    Get PDF
    We construct a general renormalization group transformation on quantum states, independent of any Hamiltonian dynamics of the system. We illustrate this procedure for translational invariant matrix product states in one dimension and show that product, GHZ, W and domain wall states are special cases of an emerging classification of the fixed points of this coarse--graining transformation.Comment: 5 pages, 2 figur

    Parity effects in the scaling of block entanglement in gapless spin chains

    Get PDF
    We consider the Renyi alpha-entropies for Luttinger liquids (LL). For large block lengths l these are known to grow like ln l. We show that there are subleading terms that oscillate with frequency 2k_F (the Fermi wave number of the LL) and exhibit a universal power-law decay with l. The new critical exponent is equal to K/(2 alpha), where K is the LL parameter. We present numerical results for the anisotropic XXZ model and the full analytic solution for the free fermion (XX) point.Comment: 4 pages, 5 figures. Final version accepted in PR

    Density of defects and the scaling law of the entanglement entropy in quantum phase transition of one dimensional spin systems induced by a quench

    Full text link
    We have studied quantum phase transition induced by a quench in different one dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one dimensional spin chains. At the critical region, the entanglement entropy of a block of LL spins with the rest of the system is also estimated which is found to increase logarithmically with LL. The dependence on the quench time puts a constraint on the block size LL. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z-axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.Comment: 4 figures, Accepted in Phys. Rev.

    A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues

    Full text link
    [EN] Growth and remodeling of soft tissues is a dynamic process and several theoretical frameworks have been developed to analyze the time-dependent, mechanobiological and/or biomechanical responses of these tissues to changes in external loads. Importantly, general processes can often be conveniently separated into truly non-steady contributions and steady-state ones. Depending on characteristic times over which the external loads are applied, time-dependent models can sometimes be specialized to respective time-independent formulations that simplify the mathematical treatment without compromising the goodness of the particularized solutions. Very few studies have analyzed the long-term, steady-state responses of soft tissue growth and remodeling following a direct approach. Here, we derive a mechanobiologically equilibrated formulation that arises from a general constrained mixture model. We see that integral-type evolution equations that characterize these general models can be written in terms of an equivalent set of time-independent, nonlinear algebraic equations that can be solved efficiently to yield long-term outcomes of growth and remodeling processes in response to sustained external stimuli. We discuss the mathematical conditions, in terms of orders of magnitude, that yield the particularized equations and illustrate results numerically for general arterial mechano-adaptations.Universidad Politecnica de Madrid; Ministerio de Educacion, Cultura y Deporte of Spain, Grant/Award Number: CAS17/00068; Ministerio de Economia y Competitividad of Spain, Grant/Award Number: DPI2015-69801-R; National Institutes of Health, Grant/Award Numbers: R01HL086418, R01HL105297, R01HL128602, U01HL116323Latorre, M.; Humphrey, JD. (2018). A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 98(12):2048-2071. https://doi.org/10.1002/zamm.20170030220482071981
    corecore