1,379 research outputs found

    Metric projective geometry, BGG detour complexes and partially massless gauge theories

    Full text link
    A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang-Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.Comment: 30 pages, LaTe

    Quantum Gravity and Causal Structures: Second Quantization of Conformal Dirac Algebras

    Get PDF
    It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed quantum gravity models by quantizing the moduli of Laplace, weight and defining-function operators on Fefferman-Graham ambient spaces. The algebra of these operators underlies conformal geometries. We extend those results to include fermions by taking an osp(1|2) "Dirac square root" of these algebras. The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern-Simons theory whose differential is a first-quantized, quantum mechanical BRST operator. The theory is a basic ingredient for building fundamental theories of physical observables.Comment: 4 pages, LaTe

    Charge dynamics in molecular junctions: Nonequilibrium Green's Function approach made fast

    Full text link
    Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: first we show how to make the GKBA work in open systems and then construct a suitable quasi-particle propagator that includes correlation effects in a diagrammatic fashion. We also provide evidence that our GKBA scheme, although already in good agreement with the KBE approach, can be further improved without increasing the computational cost.Comment: 13 pages, 13 figure

    Quantum Principal Bundles on Projective Bases

    Get PDF
    The purpose of this paper is to propose a sheaf theoretic approach to the theory of quantum principal bundles over non affine bases. We study noncommutative principal bundles corresponding to G→ G/ P, where G is a semisimple group and P a parabolic subgroup

    The qq-linked complex Minkowski space, its real forms and deformed isometry groups

    Full text link
    We establish duality between real forms of the quantum deformation of the 4-dimensional orthogonal group studied by Fioresi et al. and the classification work made by Borowiec et al.. Classically these real forms are the isometry groups of R4\mathbb{R}^4 equipped with Euclidean, Kleinian or Lorentzian metric. A general deformation, named qq-linked, of each of these spaces is then constructed, together with the coaction of the corresponding isometry group.Comment: 25 pages, discussion improved, bibliography update

    New insight into WDVV equation

    Full text link
    We show that Witten-Dijkgraaf-Verlinde-Verlinde equation underlies the construction of N=4 superconformal multi--particle mechanics in one dimension, including a N=4 superconformal Calogero model.Comment: 16 pages, no figures, LaTeX file, PACS: 04.60.Ds; 11.30.P

    The symplectic origin of conformal and Minkowski superspaces

    Get PDF
    Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in d=3,4,6d=3,4,6 and 1010 dimensions is also deeply related to the normed division algebras. In this paper we want to show the link between the conformal group and certain types of symplectic transformations over division algebras. Inspired by this observation we then propose a new\,realization of the real form of the 4 dimensional conformal and Minkowski superspaces we obtain, respectively, as a Lagrangian supermanifold over the twistor superspace C41\mathbb{C}^{4|1} and a big cell inside it. The beauty of this approach is that it naturally generalizes to the 6 dimensional case (and possibly also to the 10 dimensional one) thus providing an elegant and uniform characterization of the conformal superspaces.Comment: 15 pages, references added, minor change

    Aldosterone status associates with insulin resistance in patients with heart failure-data from the ALOFT study

    Get PDF
    <b>Background</b>: Aldosterone plays a key role in the pathophysiology of heart failure. In around 50% of such patients, aldosterone 'escapes' from inhibition by drugs that interrupt the renin-angiotensin axis; such patients have a worse clinical outcome. Insulin resistance is a risk factor in heart failure and cardiovascular disease. The relationship between aldosterone status and insulin sensitivity was investigated in a cohort of heart failure patients. <b>Methods</b>: 302 patients with New York Heart Association (NYHA) class II-IV heart failure on conventional therapy were randomized in ALiskiren Observation of heart Failure Treatment study (ALOFT), designed to test the safety of a directly acting renin inhibitor. Plasma aldosterone and 24-hour urinary aldosterone excretion as well as fasting insulin and Homeostasis model assessment of insulin resistance (HOMA-IR) were measured. Subjects with aldosterone escape and high urinary aldosterone were identified according to previously accepted definitions. <b>Results</b>: Twenty per-cent of subjects demonstrated aldosterone escape and 34% had high urinary aldosterone levels. At baseline, there was a positive correlation between fasting insulin and plasma(r=0.22 p<0.01) and urinary aldosterone(r=0.19 p<0.03). Aldosterone escape and high urinary aldosterone subjects both demonstrated higher levels of fasting insulin (p<0.008, p<0.03), HOMA-IR (p<0.06, p<0.03) and insulin-glucose ratios (p<0.006, p<0.06) when compared to low aldosterone counterparts. All associations remained significant when adjusted for potential confounders. <b>Conclusions</b>: This study demonstrates a novel direct relationship between aldosterone status and insulin resistance in heart failure. This observation merits further study and may identify an additional mechanism that contributes to the adverse clinical outcome associated with aldosterone escape

    Analysis of enhanced diffusion in Taylor dispersion via a model problem

    Full text link
    We consider a simple model of the evolution of the concentration of a tracer, subject to a background shear flow by a fluid with viscosity ν1\nu \ll 1 in an infinite channel. Taylor observed in the 1950's that, in such a setting, the tracer diffuses at a rate proportional to 1/ν1/\nu, rather than the expected rate proportional to ν\nu. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold theory. More precisely, we show that, while the high modes of the concentration decay exponentially, the low modes decay algebraically, but at an enhanced rate. Moreover, the behavior of the low modes is governed by finite-dimensional dynamics on an appropriate center manifold, which corresponds exactly to diffusion by a fluid with viscosity proportional to 1/ν1/\nu

    Gravity, Two Times, Tractors, Weyl Invariance and Six Dimensional Quantum Mechanics

    Full text link
    Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six component vector subject to a certain first order covariant constancy condition at every point in four dimensional spacetime). These results suggest a six dimensional description of four dimensional physics, a viewpoint promulgated by the two times physics program of Bars. The Fefferman--Graham construction relies on a triplet of operators corresponding, respectively to a curved six dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four dimensional gravity is recast in terms of six dimensional quantum mechanics by melding the two times and tractor approaches. This "parent" formulation of gravity is built from an infinite set of six dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four dimensional one built from a scalar doublet, a tractor vector multiplet and a conformal class of metrics.Comment: 27 pages, LaTe
    corecore