A projective geometry is an equivalence class of torsion free connections
sharing the same unparametrised geodesics; this is a basic structure for
understanding physical systems. Metric projective geometry is concerned with
the interaction of projective and pseudo-Riemannian geometry. We show that the
BGG machinery of projective geometry combines with structures known as
Yang-Mills detour complexes to produce a general tool for generating invariant
pseudo-Riemannian gauge theories. This produces (detour) complexes of
differential operators corresponding to gauge invariances and dynamics. We
show, as an application, that curved versions of these sequences give geometric
characterizations of the obstructions to propagation of higher spins in
Einstein spaces. Further, we show that projective BGG detour complexes generate
both gauge invariances and gauge invariant constraint systems for partially
massless models: the input for this machinery is a projectively invariant gauge
operator corresponding to the first operator of a certain BGG sequence. We also
connect this technology to the log-radial reduction method and extend the
latter to Einstein backgrounds.Comment: 30 pages, LaTe