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Abstract. Supermanifolds provide a very natural ground to under-
stand and handle supersymmetry from a geometric point of view; su-
persymmetry in d = 3,4,6 and 10 dimensions is also deeply related to
the normed division algebras.

In this paper we want to show the link between the conformal group
and certain types of symplectic transformations over division algebras.
Inspired by this observation we then propose a new realization of the
real form of the 4 dimensional conformal and Minkowski superspaces
we obtain, respectively, as a Lagrangian supermanifold over the twistor

superspace C
4∣1 and a big cell inside it. The beauty of this approach

is that it naturally generalizes to the 6 dimensional case (and possibly
also to the 10 dimensional one) thus providing an elegant and uniform
characterization of the conformal superspaces.

Keywords: Supergeometry, division algebras, conformal geometry, super Yang-Mills and su-

pergravity.

1

http://lanl.arxiv.org/abs/1506.09086v2


2 Fioresi, Latini

Contents

1. Introduction 2
2. Normed divison algebras and Lorentz transformations 5
3. Symplectic realization of the conformal group 9
4. The 4d Conformal and Minkowski spaces 10
5. The 4d Conformal and Minkowski superspaces 12
References 14

1. Introduction

Supersymmetry (SUSY) is a part of the modern approach to the theory
of elementary particles; supersymmetric string theory offers in fact the most
promising model, so far, for the unification of all the elementary forces in a
manner compatible with quantum theory and general relativity.
SUSY can be naturally treated by packing all physical fields, taking values
in the 4d Minkowsli space M3,1, into a unique object, i.e. the superfield,
that is assumed to take values in the 4d Minkowski superspace M3,1∣1, on
which one has locally commuting and anticommuting coordinates.

For mathematicians supersymmetry, the concept of superspace and super-
manifolds were inspiring and gave a new look at geometry, both differential
and algebraic. In geometry, in fact, ”objects” are built out of local pieces:
the most general of such object is a superspace, and the symmetries of such
an object are then supersymmetries which are described by supergroups.
The functor of points originally introduced by Grothendieck to study alge-
braic geometry, is now an essential tool to recover the geometric nature of
supergroups and superspaces, which is otherwise difficult to grasp through
the sheaf theoretic approach. It is actually and surprisingly the point of
view physicists took at the very beginning of this theory, when points of
a superspace were understood with the use of grassmann algebras, which
are nothing but superalgebras over a superspace consisting of a point (see
[1]). This suggestive point of view was later fully explained and justified by
Shvarts and Voronov in [2, 3] and then linked to the theory of functor of
points a la Grothendieck in [4, 5]. Later Manin in [6, 7] took full advantage
of the machinery of the functor of points and applied it to the theory of
superspaces and superschemes in particular to develop the theory of super-
flags and supergrassmannians, which is of particular interest to us. In the
present work however, we shall make an effort to leave the full machinery
of functor of points on the background, though employing its power in the
description of the T -points of a supergroup or a superspace. Hence we shall
rely for the results on the works [8] and [9], where all of the foundations of
the theory are fully explained together with their physical significance.

Another relevant invariance principle in physics is given by the conformal
symmetry; many physical systems, as those for massless particles, enjoy
this symmetry and one may then imagine that there are regimes where
conformal invariance is restored. In conformal geometry physics is described
by equivalence classes of metrics so that all equations are manifestly locally
Weyl invariant.



Symplectic Minkowski superspaces and division algebras 3

Minkowski space time, by the way, is not enough to support conformal
symmetry, and it needs to be compactified by adding points at infinity to
obtain a space endowed with a natural action of the conformal group. This
is evident from the Dirac cone construction in which one considers the space
of light like rays in Md,2 (known as the conformal space or conformal sphere)

and the compactified Minkowski space M
d−1,1

is then realized as one par-
ticular section of the cone. The above flat model for conformal geometry
was generalized in [10] by Fefferman and Graham who replaced Md,2 by a
d + 2 dimensional manifold equipped with a metric which admits a hyper-
surface orthogonal homothety. Note that there is a natural interpretation
of this picture as curved Cartan geometry; moreover the Cartan approach
naturally leads to a Weyl covariant differential calculus, known as tractor
calculus, originally constructed in [11] (see also [12, 13] for a physics oriented
review) and then generalized to all parabolic geometries in [14]. It can be
understood as the equivalent of the superfield formalism for conformal in-
variance.

In this paper we aim to point out that the conformal space in 3,4,6 or
10 dimensions may be also understood as a certain Lagrangian manifold
over the four normed division algebras K = R,C,H,andO; we will use the
notation n ∶= dimK = 1,2,4and 8 and denote by K

′ the split version of any
division algebra. The relationship between SUSY, sipertwistors and K is also
a recurring theme [15, 16, 17, 18]. For example nonabelian Yang-Mills theo-
ries are supersymmetric only if the dimension of the Minkowski spacetime is
d = 3,4,6 or 10 (and the same is true for the Green-Schwarz superstring). In
this case SUSY relies on the vanishing of a certain trilinear expression that
it turns to be strictly related to the existence of the four normed division
algebras in d − 2 dimensions [19]. Recently in [20] Duff and collaborators
used normed division algebras to give a descr iption of supergravity by ”ten-
soring” super Yang-Mills multiplets1. The main argument the authors used
is the observation that the entries of second row of the 2×2 half split magic
square [22, 23, 24]

R C H O

C
′ so(2,1) so(3,1) so(5,1) so(9,1)

can be naturally represented as sl2(K) producing then the Lie algebras iso-
morphisms

sl2(K) = so(n + 1,1) .
We believe that understanding the relation between SUSY and normed

division algebras from a supergeometric point of view could also give a funda-
mental contribution to the study of the quantum properties of supergravity.

In a series of papers [9, 25] the complex 4 dimensional Minkowski (su-
per)space was realized as the big cell inside a complex flag (super)manifold
where the conformal group SL4(C) acts naturally while the real Minkowski

1In literature there are in fact many attempts to understand the quantum theory
of gravity through the idea of ”Gravity is the square of Yang-Mills theories” idea sup-
ported by the fact that (super)gravity scattering amplitudes can be obtained from those
of (super)Yang-Mills [21].
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(super)space was then obtained as a suitable real form of the complex ver-
sion. We observe that this approach essentially coincides with the Dirac
cone construction; we plan then to take advantages of this observation in a
future project where we will try to study supergeometry within the Cartan
approach.
In [26], the authors constructed the compactified Minkowsky 3d superspace

M
2,1

and its supersymmetric extension, as a Lagrangian manifold over the
twistor space R

4; this relies to the isomorphism Spin(3,2) ≃ SP4(R). This
result can be nicely linked with the following observation: the third line of
the Freudenthal-Tits 2 × 2 half split magic square

R C H O

H
′ so(3,2) so(4,2) so(6,2) so(10,2)

can be reinterpreted by noting the following isomorphism

s̃p4(K) = so(n + 2,2)
with s̃p4(K) being the Sudbery symplectic algebra, where, with respect to
the traditional definition, the transpose is replaced by hermitian conjuga-
tion. Recently, in [27], it was also proposed a Lie group version of the half
split 2 × 2 magic square (see also [28, 29, 30] for further details and the
relation with exceptional Lie algebras and groups).

Inspired by these observations we then study in details a symplectic char-
acterization of the 4 dimensional (compactified and real) Minkowski space
and superspace respectively. We argue that this approach can be also ex-
tended to 6 and possibly 10 dimensions2 producing thus an uniform descrip-
tion of Mn+1,1∣1 explicitly involving the four normed division algebras.

More in details, while in [7] supergrassmannians and superflags are mainly
understood as complex objects and are constructed by themselves, in [9, 25]
these objects come together with the supergroups describing their supersym-
metries, because this is one of the main reasons of their physical significance.
Furthermore, in [9, 25] real forms of both the 4d Minkowski and conformal
superspaces are introduced through suitable involutions, which are compat-
ible with the natural supersymmetric action of the Poincaré and conformal
supergroups. In the present work, we shall leave the complex structure
on the background and actually show that we can directly obtain the real
forms of the 4d Minkowski and conformal superspaces together with their
symmetry supergroups, without ever worrying about the complex field. In
fact, it is very remarkable that abandoning the complex picture, one can
very quickly obtain the real 4d conformal and Minkowski superspaces as
Lagrangian supermanifold and its big cell respectively, without the need
to go to the superflag, which is undoubtedly a less manageable geometric
object, given its many defining relations (twistor relations).

The quantization of spacetime is an intriguing task that has been tackled
from many point of views in literature. In [32, 33, 34] the authors studied

2While the generalization to the 6 dimensional case is straightforward, further effort
are needed when d = 10 due to the notorious problem of constructing the superconformal
algebra in dimension bigger than 6 [31]; we plan to tackle this problem in a future project.
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the quantum deformation for the complex (chiral) Minkowski and confor-
mal superspaces based on the general machinery developed in [35, 36] for
flag varieties. The more direct approach to the real Minkowski and confor-
mal superspace we propose in this paper compares, immediately to the one
described in [7, 9, 25] and actually we obtain the very same equations the
Poincaré supergroup that we find in the literature, for example in [9, 25], but
with far less effort. This opens the possibility to proceed further in the the-
ory and possibly construct a quantum deformation of both real Minkowski
and conformal superspaces.

The organization of the paper is as follows:

In Section 2 we review how finite Lorentz transformations of vectors in
n + 2 dimensional Minkowski space can be characterized by means of ”unit
determinant” matrices over division algebras; this relation was originally
presented in [37]. In Section 3 we discuss the Lie group version of the third
row of 2 × 2 magic square [27]; in particular we show that certain type of
symplectic transformations induce an O(n + 2,2) rotation. In Section 4 we
prove in details how the real form of the four dimensional Minkowski and
conformal space can be obtained as a Lagrangian manifold containing the
twistor space C4 , while in Section 5 we extend this construction to the super
case.

Acknoledgements We would like to thank Prof. A. Waldron, Prof. R.
Bonezzi, Prof. J. Baez and Prof. V. S. Varadarajan for useful discussions
and suggestions and especially Prof. T. Dray for its kind help in understand-
ing the magic square of Lie groups. E.L. wishes to thank the Department of
Mathematics at the University of Bologna, for the warm ospitality during
the realization of this work. E.L. acknowledges partial support from SNF
Grant No. 200020-149150/1. E.L. research was (partly) supported by the
NCCR SwissMAP, funded by the Swiss National Science Foundation.

2. Normed divison algebras and Lorentz transformations

A normed division algebra K is a real algebra together with a norm ∣ ● ∣
such that for all v,w ∈ K we have ∣vw∣ = ∣v∣∣w∣. By a classical result (see
Hurwitz [38]) there are only four normed division algebras: the real numbers
R, the complex numbers C, the quaternions H, and the octonions O, with
n ∶= dimK = 1,2,4,8 respectively. Moreover every normed division algebra
is equipped with an involutive automorphism v ↦ v∗, i.e. the conjugation,
such that v∗∗ = v and (vw)∗ = w∗v∗; this leads to a natural decomposition

Re(v) ∶= v + v∗
2

, Im(v) ∶= v − v∗
2

that can be used to define the inner product

(v,w) ∶= Re(v w∗) = Re(w v∗)
and thus also the norm

∣v∣ ∶= √v∗ v .
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which is real. A division algebra element can be written as the linear com-
bination v = viei with vi ∈ R and i = 1, .., n. The first basis element is the
real one e1 = 1, while the others are imaginary units (ei)2 = −1, i ≠ 1.
In the case K = H the multiplication rules for the imaginary units are given
by

e3e4 = −e4e3 = e2 , e4e2 = −e2e4 = e3 , e2e3 = −e3e2 = e4
and similar relations, encoded in the so called Fano plane, hold also for
octonions (see for example [37] for more details). We will then denote by
Mn(K) the space of n × n matrices with entries in K and we say that A ∈
Mn(K) is hermitian if (A∗)t ∶= A† = A; the space of n×n hermitian matrices
will be denoted by Hn(K).

It is useful sometimes to represent any H valued n×nmatrix as a C valued
2n × 2n matrix through the following map

(1)

Z ∶ Mn(H) → M2n(C)
A ↦ (z(A) −w∗(A)

w(A) z∗(A) )
where z(A) and w(A)mean that all the entries v of the matrix A are mapped
into

z(v) = v1 + iv2 , w(v) = v3 − iv4
where i ∶= e2 is the usual imaginary units for complex numbers.

Division algebras are often used in physics to easily handle supersymme-
try; the minimal spinorial representations of the n + 2 dimensional Lorentz
group are, in fact, isomorphic as vector spaces to K

2. This fact relies
on the observation that vectors of the n + 2 dimensional Minkowski space
Mn+1,1 can be naturally identified with an element of H2(K). Consider
x = (x0,⋯, xn+1) ∈Mn+1,1 and rearrange it as follows

X = (x0 + xn+1 v∗

v x0 − xn+1) ∈ H2(K)
where v ∈ R, C, H, orO respectively is constructed with x1,⋯, xn; we recog-
nize on the top left and bottom right spot the lightcone directions we will
often denote by x± = x0±xn+1. We introduce now the so called trace reversal

matrix defined as follows

X̃ = −(x0 − xn+1 −v∗−v x0 + xn+1) ∈ H2(K)
and we then observe that

−detX = −x20 + x2n+1 + ∣v∣2 = −x20 +
n+1∑
i=1

x2i ∶= g(x,x)
or equivalently XX̃ = X̃X = g(x,x)1
with g(●,●) being the pseudo-Riemannian metric of signature (n+1,1) and
1 being the identity matrix. Note that for an H or O valued matrix we do
not have a natural and well defined notion of determinant while if we restrict
to the case 2×2 hermitian matrices it can be unambiguously determined by
the usual formula.
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It is instructive to reformulate the previous result introducing the symplectic
matrix

ǫ = ( 0 1−1 0
)

so that X t ǫX = detX ǫ .
We consider now transformations of the form

(2)
H2(K) → H2(K)
X ↦ λXλ† =∶ X ′ , λ ∈M2(K)

where extra care must be taken with octonions by requiring (λX)λ† =
λ(Xλ†); we note that detX ′ is again well defined thus if we restrict the
matrices λ to those preserving the determinant under (2), they will then
induce a Lorentz transformation.
For the case of R or C, this leads to the notorious statement that the spe-
cial linear groups SL2(R) and SL2(C) double cover the 3 and 4 dimensional
Lorentz group (or its connected component to the identity); one is then
tempted to generalize this statement and identify the n + 2 dimensional
Lorentz transformations with unit determinant matrices over K but when
we deal with H or O the construction of the special linear group requires
further assumption and elucidation since, as we commented previously, we
do not have the notion of determinant.
In order to get around this problem, we note that the following relation

det(λXλ†) = det(λλ†)det(X)
is satisfied for every K and then the transformation (2) induces a Lorentz
rotation if

(3) det(λλ†) = 1 ;
this is again unambiguous since λλ† is hermitian.

Focusing on quaternions there is an an easy way to analyze (3) by using
the map defined in (1); explicitly, for the case n = 2 we get

Z [(a b

c d
)] =

⎛⎜⎜⎜⎝

z(a) z(b) −w∗(a) −w∗(b)
z(c) z(d) −w∗(c) −w∗(d)
w(a) w(b) z∗(a) z∗(b)
w(c) w(d) z∗(c) z∗(d)

⎞⎟⎟⎟⎠
.

Using this formula, it is straightforward to prove that

det(Z[λ]) ∈ R+ ∪ {0} ∀λ ∈M2(H)
and that

det(λλ†)2 = det(Z[λλ†]) = det(Z[λ])det(Z[λ†]) .
We thus solve (3) by requiring det(Z[λ]) = 1 and we can then unambiguosly
construct the group

SL(2,H) = {λ ∈M2(H) ∣det(Z[λ]) = 1} .
When viewed in this way, SL(2,H) has a natural real Lie group structure
(Ref. [41] Theorem 2.1.2). It is interesting to observe that those matrices,
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through (2), do not produce any parity or time reversal transformation, thus
providing a natural double cover of the connected component to the identity
of the 6 dimensional Lorentz group.

For the case of octonions, due to the lack of associativity, one must also
impose certain compatibility conditions on the matrix λ appearing in (2);
this case was originally extensively studied in [37] where it was also observed
that not all 10 dimensional Lorentz transformations can be achieved with a
single matrix but, instead, to produce all of them one must also consider the
product of 2 octonionic valued matrices; this is the case, in fact, of transverse
rotations induced by the group Aut(O); along this line, the group SL2(O)
was then explicitly characterized by a generating set of matrices.
In conclusion we can then establish the following isomorphism

SL2(K) ≃ Spin(n + 1,1) .
The matrix X and X̃ defined previosuly, have a natural interpretation in

terms of Dirac gamma matrices, that we now plan to discuss.
Consider the spinor bundle; S+ and S− are both just K2 as real vector spaces,
but they differ as representation of Spin(n+ 1,1) (see [15] for more details).
We first define how a vector acts on spinors through the gamma matrices in
the Weyl base

γ ∶ Mn+1,1
→ Hom(S+, S−)

x ↦ X
γ̃ ∶ Mn+1,1

→ Hom(S−, S+)
x ↦ −X̃ .

In particular, our realization coincides, in 3 and 4 dimensions, with the
following standard choices:

γ = (1, σ1, σ3)
γ̃ = (1,−σ1,−σ3)

and
γ = (1, σ1, σ2, σ3)
γ̃ = (1,−σ1,−σ2,−σ3)

respectively, with σ1, σ2 and σ3 being the standard Pauli matrices. Dirac
matrices can be then easily constructed as

Γ = (0 γ

γ̃ 0
) ∈M4(K) ,

and in this base the chiral matrix is diagonal. They generate the map

Γ ∶ TM → End(S− ⊕ S+) .
explicitly given by

Γ(x)(ψ,λ) = (−X̃λ,Xψ)
with ψ ∈ S− and λ ∈ S+. Moreover, by construction, Γ(x) satisfies the
Clifford algebra relation Γ(x)2 = g(x,x)1.
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3. Symplectic realization of the conformal group

In the following we want to extend the analysis of the previous section to
the case of the conformal group SO(n + 2,2) and relate it to a certain class
of symplectic transformations.

We introduce M̃n+2,2 that is a pseudo-Riemannian manifold equipped
with the flat metric G(●,●) with signature (n+2,2), known in the conformal
geometry literature as the Fefferman and Graham ambient space [10], or
better to say its flat limit. We denote by xn+2 and x0′ the extra space
like and time like directions and we indicate by X = (x0′ , x0, x1,⋯, xn+2) a
general vector in the ambient space; moreover we name xp = x0′ + xn+2 and
xm = x0′ − xn+2 the new pair of lightcone coordinates.

In analogy with the case of the Lorentz group, we look for a matrix
representation of the vector X. To achieve this task our strategy is to use
the n+4 dimensional Dirac gamma matrices as a guideline; we note that there
is a standard method to construct them starting from the n+ 2 dimensional
ones:

Υ = (1
2
(0 1

1 0
) ,(γ 0

0 −γ̃) , 12 (
0 1−1 0

))
and

Υ̃ = (1
2
(0 1

1 0
) ,(γ̃ 0

0 −γ) , 12 (
0 1−1 0

)) .
Inspired by this result we construct

X = ⎛⎝
X xp1

xm1 X̃
⎞
⎠ ∈M4(K) .

We now look for a characterization of the metric in this representation. To
this aim we introduce the symplectic form

J = ( 0 1−1 0
)

and inspired by the Lie algebra isomorphism

s̃p4(K) = so(n + 2,2)
with the Subdery symplectic algebra given by

s̃p4(K) = {X ∈M4(K) ∣X†J + JX = J, trX = 0}
we compute the following:

(4) X
†J X = ( 0 −xmxp1 + X̃X

xmxp1 − X̃X 0
) = (n+2∑

i=1

x2i − x20′ − x20)J .
We recognize into the bracket the ambient metric G(X,X). The main
observation is that the relation (4) remains invariant if one transforms now
X as follows

X→ λXλ† with λ ∈M4(K) so that λ†Jλ = J .
We conclude then that those types of transformations induce an O(n+ 2,2)
rotation and, starting from here, one can hope to construct the spinorial
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representation of the conformal groups SO(n+2,2) (or their connected com-
ponent to the identity), i.e. the spin group. For the case K = R one obtains
the notorious result Spin(3,2) = Sp4(R) while when K = C we construct

S̃p4(C) = {λ ∈ SL4(C) ∣λ†Jλ = J}
and we use the tilde to emphasize the fact that we are using hermitian
conjugation instead of the usual matrix transposition. This group double
covers the connected component of the identity of SO(4,2) and we further
analyze its properties and its Lie algebra in the next chapter.

The temptation is again to extend this statement to all division algebras.
In [27, 28, 29], in fact, the authors realized SO(n + 2,2) transformation by
giving an explicit Clifford algebra description of SU(2,H′ ⊗K) that turns

out to be equivalent to the symplectic description as S̃p4(K) (see in partic-
ular [28] for a characterization of this group in the octonionic case and its
connection with exceptional Lie groups); one can in conclusion establish the
isomorphism

Spin(n + 2,2) ≅ S̃p4(K) .

4. The 4d Conformal and Minkowski spaces

In this section we would like to reinterpret the conformal space as a La-
grangian manifold and the Minkowski spaceM3,1 as a suitable big cell (hence
dense) inside it. In this way the Lagrangian manifold appears as natural
compactification of the Minkowski space M3,1 and we will see that the con-
formal and Poincaré groups will appear effortlessly in this picture as the
symmetry groups for those spaces.

Let us recall that in the previous section, following Sudbery, we con-
structed the real Lie group S̃p4(C); for convenience we report in the follow-
ing its definition

S̃p4(C) = {λ ∈ SL4(C) ∣λ†Jλ = J}, with J = ( 0 1−1 0
) .

An easy calculation shows that λ = (a b

c d
) ∈ S̃p4(C) if and only if

a†c = c†a, b†d = d†b, a†d − c†b = 1
where a, b, c, d are 2 × 2 matrices.

The Lie algebra of S̃p4(C) is explicitly given by

s̃p4(C) = {(x y

z −x†) ∈ sl4(C), z = z†, y = y†, x = x†} .
In [41] the conformal space was constructed starting from the complex
conformal group SL4(C) and looking at involutions giving the real form
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SU(2,2)3. In the following we instead take advantage of the symplectic in-
terpretation of the conformal group to propose a new characterization of the
4 dimensional Minkowski space.

Define now the inner product

⟨u, v⟩ ∶= u†Jv ;

we then construct the Lagrangian L, that is, the manifold of totally isotropic
subspaces with respect to the above inner product. Since G = S̃p4(C) acts
transitively on L, we have that

(5) L = G ⋅ ⟨e1,e2⟩ ≅ {(ac) , a†a = c†a}/GL2(C) ,
with {e1,e1,e1,e4} the standard basis for C

4. The action of GL2(C) is
needed to take into account the base change of a chosen Lagrangian sub-
space. As one can readily check:

L = S̃p4(C)/P
where

P = {(a b

0 (a†)−1)} ⊂ S̃p4(C)
is the stabilizer of ⟨e1,e2⟩.

We define the subset M3,1 ⊂ L consisting of those elements in L with a

invertible (see eq. (5)) and we write:

M3,1 = {(1X) with X † = X} .
This expression is obtained from (5) by right multiplying (a

c
) by a−1 ∈

GL2(C), and the interpretation of the hermitian matrix X is the one dis-
cussed in Section 2. M3,1 is an open dense set in L, which is compact. M3,1

is our model for the real Minkowski space and its compactification L is the
model for the real conformal space. We now want to justify this terminology
by computing the groups that naturally act on these spaces. We first ob-
serve that L carries a natural action of S̃p4(C), which we identify with the
conformal group since it preserves the ambient metric, as we have shown in
Section 3.

We now want to compute the subgroup in S̃p4(C) preserving M3,1. We
will see it becomes naturally identified with the real Poincaré group and its
action on M3,1 is the correct one, restricting the action of the conformal
group S̃p4(C) on the conformal space L. Let λ ∈ S̃p4(C) be such that
λ ⋅M3,1 =M3,1, that is :

λ ⋅ x = ( l m

nl r
)(1X) = ( l +mXnl + rX) .

3It is not hard to prove that S̃p
4
(C) and SU(2,2) are diffeomorphic globally, and they

both double cover the conformal group SO(4,2). We anyhow prefer in this paper to use

S̃p
4
(C) that suggests a more natural generalization to the higher dimensional cases.
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Hence l +mX must be invertible for all X . In particular this gives immedi-
ately that l must be invertible, so our condition says 1+qX invertible for allX , with q = l−1m. By the conditions defining S̃p4(C), we have that n, r†m
are hermitian and so is r† −m†n = l−1. So q = l−1m = r†m −m†nm is also
hermitian. If q ≠ 0 (i.e. m ≠ 0), then q2 > 0 so it has an eigenvalue k > 0.
Then 1 + qX is not invertible for X = −k−1q. So we conclude m = 0.

We have thus proven that the subgroup P̂ leaving M3,1 invariant is the
the transpose of P namely:

P̂ = {( l 0
nl (l†)−1)} ⊂ S̃p4(C) .

It acts on M3,1 as follows

P̂ × M3,1
Ð→ M3,1

( l 0
nl (l†)−1) , X ↦ n + (l−1)†X l−1

and we identify the first term with space time translations, while the second
contribution represents both Lorentz rotations and dilations; we observe
that this coincide with the group stabilizing a light like ray of the Dirac
cone. With an abuse of terminology we call P̂ the Poincaré group.

5. The 4d Conformal and Minkowski superspaces

In this section we want to generalize the results discussed in the previous
section to the supersetting and thus construct the Minkowski superspace
M3,1∣1 using the super version of S̃p4(C), namely S̃pO(4∣1), a real form
of the symplectic-orthogonal supergroup (for the definition of the complex
Osp and its equivalent SpO see [8] Ch. 11; in [40] it is also discussed its
connection with susy curves). We shall define this supergroup via its functor
of points. The R-points of the general linear supergroup consist of the group
of invertible m + n ×m + n matrices with coefficients in the commutative
superalgebra R (the diagonal blocks have even coefficients, the off diagonal
blocks odd coefficients). We denote such R points with GL(m∣n)(R). The
R-points of a (closed) subsupergroup G of GL(m∣n) consist of matrices in
GL(m∣n)(R) satisfying certain algebraic condition. We are going to realize

G = S̃pO(4∣1) the real symplectic-orthogonal supergroup precisely in this
way. For all of the relevant definitions and the details we are unable to give
here, we invite the reader to consult [8] Ch. 1, 9, 11.

We then define:

S̃pO(4∣1)(R) = {Λ ∈ SL4∣1(R) ∣Λ†JΛ = J }, with J = ⎛⎜⎝
0 1 0
−1 0 0
0 0 1

⎞⎟⎠ .

This gives us effectively a supergroup functor S̃pO(4∣1) ∶ (salg) Ð→ (sets),
R ↦ S̃pO(4∣1)(R), ((salg) is the category of commutative real superalgebras,(sets) is the category of sets). This functor is representable, in other words,
there is a Lie supergroup corresponding to it, in the sheaf theoretic approach
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(i.e. a superspace locally isomorphic to R
M ∣N ). S̃pO(4∣1) is a closed sub-

group of the complex symplectic-orthogonal supergroup S̃pO(4∣1), viewed
as a real supergroup. We shall not worry about the definition of our functors
on the arrows: such definition comes from the one of GL(m∣n) (see [8] Ch.
1, 11).

If

Λ = (A α

β u
) , A = (a b

c d
) , β = (β1, β2), α = (α1, α2)t,

with βi, αi ∈ R2, we obtain from the condition Λ†JΛ = J the following set
of equations

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A†JA + β†β = J
A†Jα + β†u = 0
α†JA + u†β = 0
α†Jα + u†u = 1

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a†c − c†a + β
†
1β1 = 0

a†d − c†b + β
†
1β2 = 1

b†c − d†a + β
†
2β1 = −1

b†d − d†b + β
†
2β2 = 0

−c†α1 + a
†α2 + β

†
1u = 0

−d†α1 + b
†α2 + β

†
2u = 0

−α
†
2α1 +α

†
1α2 + u

†u = 1
Notice that these equations correspond for α = 0 and β = 0 to the ones
obtained in Section 4.

We now proceed as we did in Section 4 and look at the supermanifold L
of 2∣0 totally isotropic subspaces. If {e1,e2,e3,e4,E} is a basis for C4∣1, we
define L as the orbit of ⟨e1,e2⟩. This is a supermanifold (see [8] Proposition
9.1.4). If R is a local superalgebra, we have

(7) L(R) = G ⋅ ⟨E1,E2⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
a

c

β1

⎞⎟⎠ ∣a
†c − c†a + β

†
1β1 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
/GL2(R) .

Note that GL2(R) accounts as before for possible change of basis. We then
look, as in Section 4, to the open subset of L consisting of those subspaces
corresponding to a invertible. We call it M3,1∣1, it will be our model for the
Minkowski superspace, while L is the compactification of M3,1∣1 and it is the
conformal superspace. By multiplying by a suitable element of GL2(R) we
have:

M3,1∣1(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
1

Y

ζ

⎞⎟⎠ ∣Y
† = Y + ζ†ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Here R is a commutative superalgebra, not necessarily local as before. No-
tice that Y = ca−1, ζ = β1a−1 with respect to the expression in (7). Hence
the equation is obtained immediately from (7) by setting a = 1. This is pre-
cisely the condition found in [25]. Notice that here the condition is coming
naturally from the context we have chosen, while in [25] the same condi-
tion is obtained with more effort, through an involution of the conformal
superspace. With this approach we are able to compute directly the real
Minkowski superspace without resorting to the superflag.
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We now turn and examine the Poincaré supergroup. We want a super-
group acting on M3,1∣1. We notice that the supergroup functor

ŝP(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
L 0 0
M R Rφ

dχ 0 d

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

leaves M3,1∣1 invariant, it is representable (it is a closed subsupergroup of

S̃p(4∣1) and its reduced group is the Poincaré group. (We use the notation

as in [25] so to make the comparison easier). We take then ŝP (R) as our
definition for the Poincaré supergroup. Applying the equations in (6) to

ŝP (R) we obtain:

R = (L†)−1, φ = χ†, ML−1 = (ML−1)† + (L†)−1χ†χL−1 .

Hence

ŝP(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
L 0 0
M (L†)−1 (L†)−1χ†

dχ 0 d

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

which is precisely the Poincare’ supergroup as given in [25].

The action on M3,1∣1 can then be readily computed, and it yields:

ŝP × M3,1∣1
Ð→ M3,1∣1

⎛⎜⎝
L 0 0
M (L†)−1 (χL−1)†
dχ 0 d

⎞⎟⎠ ,

⎛⎜⎜⎜⎝

1

Y

ζ

⎞⎟⎟⎟⎠
↦

⎛⎜⎜⎜⎝

1

ML−1 + (L†)−1YL−1 + (χL−1)†ζL−1
dχL−1 + dζL−1

⎞⎟⎟⎟⎠
as expected.
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