Real-time Green's function simulations of molecular junctions (open quantum
systems) are typically performed by solving the Kadanoff-Baym equations (KBE).
The KBE, however, impose a serious limitation on the maximum propagation time
due to the large memory storage needed. In this work we propose a simplified
Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA)
to overcome the KBE limitation on time, significantly speed up the
calculations, and yet stay close to the KBE results. This is achieved through a
twofold advance: first we show how to make the GKBA work in open systems and
then construct a suitable quasi-particle propagator that includes correlation
effects in a diagrammatic fashion. We also provide evidence that our GKBA
scheme, although already in good agreement with the KBE approach, can be
further improved without increasing the computational cost.Comment: 13 pages, 13 figure