1,813 research outputs found
Predicting the effects of climate change on water yield and forest production in the northeastern United States
Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region
Polymorphisms in the WNK1 gene are asociated with blood pressure variation and urinary potassium excretion
WNK1 - a serine/threonine kinase involved in electrolyte homeostasis and blood pressure (BP) control - is an excellent candidate gene for essential hypertension (EH). We and others have previously reported association between WNK1 and BP variation. Using tag SNPs (tSNPs) that capture 100% of common WNK1 variation in HapMap, we aimed to replicate our findings with BP and to test for association with phenotypes relating to WNK1 function in the British Genetics of Hypertension (BRIGHT) study case-control resource (1700 hypertensive cases and 1700 normotensive controls). We found multiple variants to be associated with systolic blood pressure, SBP (7/28 tSNPs min-p = 0.0005), diastolic blood pressure, DBP (7/28 tSNPs min-p = 0.002) and 24 hour urinary potassium excretion (10/28 tSNPs min-p = 0.0004). Associations with SBP and urine potassium remained significant after correction for multiple testing (p = 0.02 and p = 0.01 respectively). The major allele (A) of rs765250, located in intron 1, demonstrated the strongest evidence for association with SBP, effect size 3.14 mmHg (95%CI:1.23–4.9), DBP 1.9 mmHg (95%CI:0.7–3.2) and hypertension, odds ratio (OR: 1.3 [95%CI: 1.0–1.7]).We genotyped this variant in six independent populations (n = 14,451) and replicated the association between rs765250 and SBP in a meta-analysis (p = 7×10−3, combined with BRIGHT data-set p = 2×10−4, n = 17,851). The associations of WNK1 with DBP and EH were not confirmed. Haplotype analysis revealed striking associations with hypertension and BP variation (global permutation p10 mmHg reduction) and risk for hypertension (OR<0.60). Our data indicates that multiple rare and common WNK1 variants contribute to BP variation and hypertension, and provide compelling evidence to initiate further genetic and functional studies to explore the role of WNK1 in BP regulation and EH
Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood
BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P<5x10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7 ), 14q22 (rs7493885 near NIN; P=2.9x10-6 ) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSION AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms. This article is protected by copyright. All rights reserved
On parameters of the Levi-Civita solution
The Levi-Civita (LC) solution is matched to a cylindrical shell of an
anisotropic fluid. The fluid satisfies the energy conditions when the mass
parameter is in the range . The mass per unit
length of the shell is given explicitly in terms of , which has a
finite maximum. The relevance of the results to the non-existence of horizons
in the LC solution and to gauge cosmic strings is pointed out.Comment: Latex, no figure
The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab
The ArgoNeuT liquid argon time projection chamber has collected thousands of
neutrino and antineutrino events during an extended run period in the NuMI
beam-line at Fermilab. This paper focuses on the main aspects of the detector
layout and related technical features, including the cryogenic equipment, time
projection chamber, read-out electronics, and off-line data treatment. The
detector commissioning phase, physics run, and first neutrino event displays
are also reported. The characterization of the main working parameters of the
detector during data-taking, the ionization electron drift velocity and
lifetime in liquid argon, as obtained from through-going muon data complete the
present report.Comment: 43 pages, 27 figures, 5 tables - update referenc
Immunoseq: the identification of functionally relevant variants through targeted capture and sequencing of active regulatory regions in human immune cells
: The observation that the genetic variants identified in genome-wide association studies (GWAS) frequently lie in non-coding regions of the genome that contain cis-regulatory elements suggests that altered gene expression underlies the development of many complex traits. In order to efficiently make a comprehensive assessment of the impact of non-coding genetic variation in immune related diseases we emulated the whole-exome sequencing paradigm and developed a custom capture panel for the known DNase I hypersensitive site (DHS) in immune cells - "Immunoseq".
: We performed Immunoseq in 30 healthy individuals where we had existing transcriptome data from T cells. We identified a large number of novel non-coding variants in these samples. Relying on allele specific expression measurements, we also showed that our selected capture regions are enriched for functional variants that have an impact on differential allelic gene expression. The results from a replication set with 180 samples confirmed our observations.
: We show that Immunoseq is a powerful approach to detect novel rare variants in regulatory regions. We also demonstrate that these novel variants have a potential functional role in immune cells.This work was supported by grants from the Canadian Institute of Health Research (CIHR), the UK Medical Research Council (G1100125), the Swedish Research Council (DO283001) and Knut and Alice Wallenberg Foundation (KAW). We also acknowledge the use of subjects from the Cambridge BioResource and the support of the Cambridge NIHR Biomedical Research Centre. AM was supported by the Fond de Recherche Santé Québec Doctoral training award. TP and CL holds a Canada Research Chair
Statistics of extremal intensities for Gaussian interfaces
The extremal Fourier intensities are studied for stationary
Edwards-Wilkinson-type, Gaussian, interfaces with power-law dispersion. We
calculate the probability distribution of the maximal intensity and find that,
generically, it does not coincide with the distribution of the integrated power
spectrum (i.e. roughness of the surface), nor does it obey any of the known
extreme statistics limit distributions. The Fisher-Tippett-Gumbel limit
distribution is, however, recovered in three cases: (i) in the non-dispersive
(white noise) limit, (ii) for high dimensions, and (iii) when only
short-wavelength modes are kept. In the last two cases the limit distribution
emerges in novel scenarios.Comment: 15 pages, including 7 ps figure
A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes
Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Perron et al. develop a computational approach that models the functional activity of RBPs in individual cancer samples by monitoring their associated RNA stability programs. Applying this method to renal cell carcinoma transcriptomes, the authors identify RBPs that enhance cancer-associated pathways including hypoxia and cell cycle
Universality in fully developed turbulence
We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70,
3251 (1993)] of highly turbulent flow with Taylor-Reynolds number
up to , employing a reduced wave
vector set method (introduced earlier) to approximately solve the Navier-Stokes
equation. First, also for these extremely high Reynolds numbers ,
the energy spectra as well as the higher moments -- when scaled by the spectral
intensity at the wave number of peak dissipation -- can be described by
{\it one universal} function of for all . Second, the ISR
scaling exponents of this universal function are in agreement with
the 1941 Kolmogorov theory (the better, the large is), as is the
dependence of . Only around viscous damping leads to
slight energy pileup in the spectra, as in the experimental data (bottleneck
phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys.
Rev.
Perfect-fluid cylinders and walls - sources for the Levi-Civita space-time
The diagonal metric tensor whose components are functions of one spatial
coordinate is considered. Einstein's field equations for a perfect-fluid source
are reduced to quadratures once a generating function, equal to the product of
two of the metric components, is chosen. The solutions are either static fluid
cylinders or walls depending on whether or not one of the spatial coordinates
is periodic. Cylinder and wall sources are generated and matched to the vacuum
(Levi--Civita) space--time. A match to a cylinder source is achieved for
-\frac{1}{2}<\si<\frac{1}{2}, where \si is the mass per unit length in the
Newtonian limit \si\to 0, and a match to a wall source is possible for
|\si|>\frac{1}{2}, this case being without a Newtonian limit; the positive
(negative) values of \si correspond to a positive (negative) fluid density.
The range of \si for which a source has previously been matched to the
Levi--Civita metric is 0\leq\si<\frac{1}{2} for a cylinder source.Comment: 22 pages, LaTeX, one included figure. Revised version: three
(non-perfect-fluid) interior solutions are added, one of which falsifies the
original conjecture in Sec. 4, and the circular geodesics of the Levi-Civita
space-time are discussed in a footnot
- …