258 research outputs found

    The Mutational Consequences of Plant Transformation

    Get PDF
    Plant transformation is a genetic engineering tool for introducing transgenes into plant genomes. It is now being used for the breeding of commercial crops. A central feature of transformation is insertion of the transgene into plant chromosomal DNA. Transgene insertion is infrequently, if ever, a precise event. Mutations found at transgene insertion sites include deletions and rearrangements of host chromosomal DNA and introduction of superfluous DNA. Insertion sites introduced using Agrobacterium tumefaciens tend to have simpler structures but can be associated with extensive chromosomal rearrangements, while those of particle bombardment appear invariably to be associated with deletion and extensive scrambling of inserted and chromosomal DNA. Ancillary procedures associated with plant transformation, including tissue culture and infection with A tumefaciens, can also introduce mutations. These genome-wide mutations can number from hundreds to many thousands per diploid genome. Despite the fact that confidence in the safety and dependability of crop species rests significantly on their genetic integrity, the frequency of transformation-induced mutations and their importance as potential biosafety hazards are poorly understood

    Discovery and Precise Characterization by the MEarth Project of LP 661-13, an Eclipsing Binary Consisting of Two Fully Convective Low-mass Stars

    Get PDF
    We report the detection of stellar eclipses in the LP 661-13 system. We present the discovery and characterization of this system, including high resolution spectroscopic radial velocities and a photometric solution spanning two observing seasons. LP 661-13 is a low mass binary system with an orbital period of 4.7043512−0.0000010+0.00000134.7043512^{+0.0000013}_{-0.0000010} days at a distance of 24.9±1.324.9 \pm 1.3 parsecs. LP 661-13A is a 0.30795±0.000840.30795 \pm 0.00084 M⊙M_\odot star while LP 661-13B is a 0.19400±0.000340.19400 \pm 0.00034 M⊙M_\odot star. The radius of each component is 0.3226±0.00330.3226 \pm 0.0033 R⊙R_\odot and 0.2174±0.00230.2174 \pm 0.0023 R⊙R_\odot, respectively. We detect out of eclipse modulations at a period slightly shorter than the orbital period, implying that at least one of the components is not rotating synchronously. We find that each component is slightly inflated compared to stellar models, and that this cannot be reconciled through age or metallicity effects. As a nearby eclipsing binary system where both components are near or below the full-convection limit, LP 661-13 will be a valuable test of models for the structure of cool dwarf stars.Comment: 24 pages, 8 tables, 6 figures. Submitted to ApJ, comments welcom

    LHS 1610A: A Nearby Mid-M Dwarf with a Companion That is Likely A Brown Dwarf

    Full text link
    We present the spectroscopic orbit of LHS 1610A, a newly discovered single-lined spectroscopic binary with a trigonometric distance placing it at 9.9 pm 0.2 pc. We obtained spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. We demonstrate the use of the TiO molecular bands at 7065 -- 7165 Angstroms to measure radial velocities and achieve an average estimated velocity uncertainty of 28 m/s. We measure the orbital period to be 10.6 days and calculate a minimum mass of 44.8 pm 3.2 Jupiter masses for the secondary, indicating that it is likely a brown dwarf. We place an upper limit to 3 sigma of 2500 K on the effective temperature of the companion from infrared spectroscopic observations using IGRINS on the 4.3m Discovery Channel Telescope. In addition, we present a new photometric rotation period of 84.3 days for the primary star using data from the MEarth-South Observatory, with which we show that the system does not eclipse.Comment: 10 pages, 5 figures; accepted for publication in the Astronomical Journa

    Partial differential equation techniques for analysing animal movement: a comparison of different methods

    Get PDF
    Recent advances in animal tracking have allowed us to uncover the drivers of movement in unprecedented detail. This has enabled modellers to construct ever more realistic models of animal movement, which aid in uncovering detailed patterns of space use in animal populations. Partial differential equations (PDEs) provide a popular tool for mathematically analysing such models. However, their construction often relies on simplifying assumptions which may greatly affect the model outcomes. Here, we analyse the effect of various PDE approximations on the analysis of some simple movement models, including a biased random walk, central-place foraging processes and movement in heterogeneous landscapes. Perhaps the most commonly-used PDE method dates back to a seminal paper of Patlak from 1953. However, our results show that this can be a very poor approximation in even quite simple models. On the other hand, more recent methods, based on transport equation formalisms, can provide more accurate results, as long as the kernel describing the animal's movement is sufficiently smooth. When the movement kernel is not smooth, we show that both the older and newer methods can lead to quantitatively misleading results. Our detailed analysis will aid future researchers in the appropriate choice of PDE approximation for analysing models of animal movement

    Kepler-16: A Transiting Circumbinary Planet

    Get PDF
    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size, and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20% and 69% as massive as the sun, and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degree of a single plane, suggesting that the planet formed within a circumbinary disk.Comment: Science, in press; for supplemental material see http://www.sciencemag.org/content/suppl/2011/09/14/333.6049.1602.DC1/1210923.Doyle.SOM.pd

    Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc

    Get PDF
    We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of 1.38−0.12+0.13{1.38}_{-0.12}^{+0.13} R⊕{R}_{\oplus }, an orbital period of 5.35882−0.00031+0.00030{5.35882}_{-0.00031}^{+0.00030} days, and an equilibrium temperature of 433−27+28{433}_{-27}^{+28} K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 M⊕{M}_{\oplus } on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip

    Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Get PDF
    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the NASA Exoplanet Archiv

    TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

    Full text link
    Data from the newly-commissioned \textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.32±0.021.32\pm 0.02 R⊕R_\oplus and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I=11.9I=11.9, K=9.1K=9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase, using data from the pipelines at the TESS Science Office and at the TESS Science Processing Operations Cente

    Constraining Exoplanet Metallicities and Aerosols with ARIEL: An Independent Study by the Contribution to ARIEL Spectroscopy of Exoplanets (CASE) Team

    Full text link
    Launching in 2028, ESA's Atmospheric Remote-sensing Exoplanet Large-survey (ARIEL) survey of ∼\sim1000 transiting exoplanets will build on the legacies of Kepler and TESS and complement JWST by placing its high precision exoplanet observations into a large, statistically-significant planetary population context. With continuous 0.5--7.8~μ\mum coverage from both FGS (0.50--0.55, 0.8--1.0, and 1.0--1.2~μ\mum photometry; 1.25--1.95~μ\mum spectroscopy) and AIRS (1.95--7.80~μ\mum spectroscopy), ARIEL will determine atmospheric compositions and probe planetary formation histories during its 3.5-year mission. NASA's proposed Contribution to ARIEL Spectroscopy of Exoplanets (CASE) would be a subsystem of ARIEL's FGS instrument consisting of two visible-to-infrared detectors, associated readout electronics, and thermal control hardware. FGS, to be built by the Polish Academy of Sciences' Space Research Centre, will provide both fine guiding and visible to near-infrared photometry and spectroscopy, providing powerful diagnostics of atmospheric aerosol contribution and planetary albedo, which play a crucial role in establishing planetary energy balance. The CASE team presents here an independent study of the capabilities of ARIEL to measure exoplanetary metallicities, which probe the conditions of planet formation, and FGS to measure scattering spectral slopes, which indicate if an exoplanet has atmospheric aerosols (clouds and hazes), and geometric albedos, which help establish planetary climate. Our design reference mission simulations show that ARIEL could measure the mass-metallicity relationship of its 1000-planet single-visit sample to >7.5σ>7.5\sigma and that FGS could distinguish between clear, cloudy, and hazy skies and constrain an exoplanet's atmospheric aerosol composition to >5σ>5\sigma for hundreds of targets, providing statistically-transformative science for exoplanet atmospheres.Comment: accepted to PASP; 23 pages, 6 figure
    • …
    corecore