701 research outputs found

    Efficient Transfer of Genes into Murine Cardiac Grafts by Starburst Polyamidoamine Dendrimers

    Full text link
    Overview summary Plasmid-mediated gene therapy has been used to deliver immunosuppressive molecules into allografts to prolong graft survival. However, direct injection of naked plasmid DNA is inefficient because transgene expression is low and transient. This study investigated the ability of Starburst dendrimers to augment plasmid-mediated gene transfer efficiency in a murine cardiac transplantation model. The results demonstrate that dendrimers increased the efficiency of transfer and expression of exogenous DNA in cardiac grafts. Improved expression of an immunosuppressive cytokine viral interleukin-10 (vIL-10) by dendrimers significantly prolonged allograft survival. The dose of DNA, the charge ratio of DNA to dendrimer, and the size generation of the dendrimers were all critical for prolongation of allograft survival. Thus, the use of the Starburst dendrimer as a carrier molecule for plasmid-mediated gene transfer improved the efficiency of transfer and expression, providing further therapeutic value for treatment of cardiac allograft rejection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63156/1/hum.1998.9.4-553.pd

    Dendrimer-Entrapped Gold Nanoparticles as a Platform for Cancer-Cell Targeting and Imaging

    Full text link
    We present a general approach for the targeting and imaging of cancer cells using dendrimer-entrapped gold nanoparticles (Au DENPs). Au DENPs were found to be able to covalently link with targeting and imaging ligands for subsequent cancer-cell targeting and imaging. The Au DENPs linked with defined numbers of folic acid (FA) and fluorescein isothiocyanate (FI) molecules are water soluble, stable, and biocompatible. In 14vitro studies show that the FA- and FI-modified Au DENPs can specifically bind to KB cells (a human epithelial carcinoma cell line) that overexpress high-affinity folate receptors and they are internalized dominantly into lysosomes of target cells within 2 14h. These findings demonstrate that Au DENPs may serve as a general platform for cancer imaging and therapeutics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56102/1/1245_ftp.pd

    Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals

    Full text link
    Dendrimer conjugates for pharmaceutical development are capable of enhancing the local delivery of cytotoxic drugs. The ability to conjugate different targeting ligands to the dendrimer allows for the cytotoxic drug to be focused at the intended target cell while minimizing collateral damage in normal cells. Dendrimers offer several advantages over other polymer conjugates by creating a better defined, more monodisperse therapeutic scaffold. Toxicity from the dendrimer, targeted and nonspecific, is not only dependent upon the number of targeting and therapeutic ligands conjugated, but can be influenced by the repeating building blocks that grow the dendrimer, the dendrimer generation, as well as the surface termination. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69178/1/79_ftp.pd

    CE of poly(amidoamine) succinamic acid dendrimers using a poly(vinyl alcohol)-coated capillary

    Full text link
    Various generations (G1–G8) of negatively charged poly(amidoamine) (PAMAM) succinamic acid dendrimers (PAMAM-SAH) were analyzed by CE using a poly(vinyl alcohol)-coated capillary. Due to its excellent stability and osmotic flow-shielding effect, highly reproducible migration times were achieved for all generations of dendrimer ( e.g ., RSD for the migration times of G5 dendrimer was 0.6%). We also observed a reverse trend in migration times for the PAMAM-SAH dendrimers ( i.e ., higher generations migrated faster than lower generation dendrimers) compared to amine-terminated PAMAM dendrimers reported in the literature. This reversal in migration times was attributed to the difference in counterion binding around these negatively charged dendrimers. This reverse trend allowed a generational separation for lower generation (G1–G3) dendrimers. However, a sufficient resolution for the migration peaks of higher generations (G4–G5) in a mixture could not be achieved. This could be due to their nearly identical charge/mass ratio and dense molecular conformations. In addition, we show that dye-functionalized PAMAM-SAH dendrimers can also be analyzed with high reproducibility using this method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57911/1/510_ftp.pd

    Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    Get PDF
    OBJECTIVE: We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH(2) and tat-CLIO. MATERIALS AND METHODS: The hNSCs (5 x 10(5) HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 microg/ml of ferumoxides, MION or CLIO-NH(2), and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. RESULTS: The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15+/-0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH(2), respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH(2) into the hNSCs was comparable to that of tat-CLIO. CONCLUSION: For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH(2) and the transfection agent PLL.This research was supported by the Korean Health 21 R & D Project, Ministry of Health & Welfare (Project No. A040004), by the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (Grant no. 0420080-1), and by the National R & D Program of the Korean Ministry of Science and Technology (Project No. SC-3111

    Overexpression of α(1,3)-fucosyltransferase VII is sufficient for the acquisition of lung colonization phenotype in human lung adenocarcinoma HAL-24Luc cells

    Get PDF
    Metastatic human lung adenocarcinoma HAL-8Luc cells display an enhanced expression of alpha(1,3)-fucosyltransferases (alpha(1,3)-Fuc-Ts) compared with their non-metastatic counterpart HAL-24Luc cells. This correlates with an increased surface expression of Lewis(x) (Le(x))- and Lewis(a) (Le(a))-related molecules and an in vitro enhanced adhesive capacity to E-selectin-expressing endothelial cells (Martin-Satué et al (1998). Cancer Res 58: 1544-1550). In the present work we have stably transfected HAL-24Luc cells with the cDNAs for the alpha(1,3)-Fuc-TIV and VII enzymes and analysed by flow cytometry the expression of Le(x), sialyl-Le(x), sialyl-Le(x) dimeric, Le(a) and sialyl-Le(a). Fuc-TVII transfectants exclusively overexpress sialyl-Le(x) while Fuc-TIV-transfected cells only overexpress the Le(x) oligosaccharide. We show that solely Fuc-TVII transfectants are able to adhere to interleukin-1beta-stimulated HUVEC monolayers. We also demonstrate that Fuc-TVII overexpression in HAL-24Luc cells is sufficient for the acquisition of the lung colonization phenotype. This is the first report directly showing the contribution of an alpha(1,3)-Fuc-T to the metastatic behaviour of human lung adenocarcinoma cells

    Dendrimer-Functionalized Iron Oxide Nanoparticles for Specific Targeting and Imaging of Cancer Cells

    Full text link
    We demonstrated a unique approach that combines a layer-by-layer (LbL) self-assembly method with dendrimer chemistry to functionalize Fe 3 O 4 nanoparticles (NPs) for specific targeting and imaging of cancer cells. In this approach, positively charged Fe 3 O 4 NPs (8.4 nm in diameter) synthesized by controlled co-precipitation of Fe II and Fe III ions were modified with a bilayer composed of polystyrene sulfonate sodium salt and folic acid (FA)- and fluorescein isothiocyanate (FI)-functionalized poly(amidoamine) dendrimers of generation 5 (G5.NH 2 -FI-FA) through electrostatic LbL assembly, followed by an acetylation reaction to neutralize the remaining surface amine groups of G5 dendrimers. Combined flow cytometry, confocal microscopy, transmission electron microscopy, and magnetic resonance imaging studies show that Fe 3 O 4 /PSS/G5.NHAc-FI-FA NPs can specifically target cancer cells overexpressing FA receptors. The present approach to functionalizing Fe 3 O 4 NPs opens a new avenue to fabricating various NPs for numerous biological sensing and therapeutic applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57409/1/3043_ftp.pd

    Folate‐targeted nanoparticles show efficacy in the treatment of inflammatory arthritis

    Full text link
    Objective To investigate the uptake of a poly(amidoamine) dendrimer (generation 5 [G5]) nanoparticle covalently conjugated to polyvalent folic acid (FA) as the targeting ligand into macrophages, and to investigate the activity of an FA‐ and methotrexate (MTX)–conjugated dendrimer (G5‐FA‐MTX) as a therapeutic for the inflammatory disease of arthritis. Methods In vitro studies were performed in macrophage cell lines and in isolated mouse macrophages to check the cellular uptake of fluorescence‐tagged G5‐FA nanoparticles, using flow cytometry and confocal microscopy. In vivo studies were conducted in a rat model of collagen‐induced arthritis to evaluate the therapeutic potential of G5‐FA‐MTX. Results Folate‐targeted dendrimer bound and internalized in a receptor‐specific manner into both folate receptor β–expressing macrophage cell lines and primary mouse macrophages. The conjugate G5‐FA‐MTX acted as a potent antiinflammatory agent and reduced arthritis‐induced parameters of inflammation such as ankle swelling, paw volume, cartilage damage, bone resorption, and body weight decrease. Conclusion The use of folate‐targeted nanoparticles to specifically target MTX into macrophages may provide an effective clinical approach for antiinflammatory therapy in rheumatoid arthritis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86938/1/30459_ftp.pd

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt
    corecore