3 research outputs found

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF
    The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.We acknowledge funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), and the European Community through e-I3 ETSF project (Grant Agreement No. 211956).Peer reviewe

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF

    Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives

    Get PDF
    International audienceDriven by the continuous search for improving performances, understanding the phenomena at the electrode/electrolyte interfaces has become an overriding factor for the success of sustainable and efficient battery technologies for mobile and stationary applications. Toward this goal, rapid advances have been made regarding simulations/modeling techniques and characterization approaches, including high-throughput electrochemical measurements coupled with spectroscopies. Focusing on Li-ion batteries, current developments are analyzed in the field as well as future challenges in order to gain a full description of interfacial processes across multiple length/timescales; from charge transfer to migration/diffusion properties and interphases formation, up to and including their stability over the entire battery lifetime. For such complex and interrelated phenomena, developing a unified workflow intimately combining the ensemble of these techniques will be critical to unlocking their full investigative potential. For this paradigm shift in battery design to become reality, it necessitates the implementation of research standards and protocols, underlining the importance of a concerted approach across the community. With this in mind, major collaborative initiatives gathering complementary strengths and skills will be fundamental if societal and environmental imperatives in this domain are to be met. \textcopyright 2021 The Authors. Advanced Energy Materials published by Wiley-VCH Gmb
    corecore