203 research outputs found

    Harnessing plant trichome biochemistry for the production of useful compounds

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71403/1/j.1365-313X.2008.03432.x.pd

    A J-Like Protein Influences Fatty Acid Composition of Chloroplast Lipids in Arabidopsis

    Get PDF
    A comprehensive understanding of the lipid and fatty acid metabolic machinery is needed for optimizing production of oils and fatty acids for fuel, industrial feedstocks and nutritional improvement in plants. T-DNA mutants in the poorly annotated Arabidopsis thaliana gene At1g08640 were identified as containing moderately high levels (50–100%) of 16∶1Δ7 and 18∶1Δ9 leaf fatty acids and subtle decreases (5–30%) of 16∶3 and 18∶3 (http://www.plastid.msu.edu/). TLC separation of fatty acids in the leaf polar lipids revealed that the chloroplastic galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were the main lipid types affected by this mutation. Analysis of the inferred amino acid sequence of At1g08640 predicted the presence of a transit peptide, three transmembrane domains and an N-terminal J-like domain, and the gene was named CJD1 for Chloroplast J-like Domain 1. GFP reporter experiments and in vitro chloroplast import assays demonstrated CJD1 is a chloroplast membrane protein. Screening of an Arabidopsis cDNA library by yeast-2-hybrid (Y2H) using the J-like domain of CJD1 as bait identified a plastidial inner envelope protein (Accumulation and Replication of Chloroplasts 6, ARC6) as the primary interacting partner in the Y2H assay. ARC6 plays a central role in chloroplast division and binds CJD1 via its own J-like domain along with an adjacent conserved region whose function is not fully known. These results provide a starting point for future investigations of how mutations in CJD1 affect lipid composition

    Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (<i>Panicum virgatum</i> L.)

    Get PDF
    ⋅ Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance resilience. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown. ⋅ To investigate specialized metabolic drought responses in switchgrass, we integrated tissue-specific transcriptome and metabolite analyses of the genotypes Alamo and Cave-in-Rock that feature different drought tolerance. ⋅ The more drought-susceptible Cave-in-Rock featured an earlier onset of transcriptomic changes and significantly more differentially expressed genes in response to drought compared to Alamo. Specialized pathways showed moderate differential expression compared to pronounced transcriptomic alterations in carbohydrate and amino acid metabolism. However, diterpenoid-biosynthetic genes showed drought-inducible expression in Alamo roots, contrasting largely unaltered triterpenoid and phenylpropanoid pathways. Metabolomic analyses identified common and genotype-specific flavonoids and terpenoids. Consistent with transcriptomic alterations, several root diterpenoids showed significant drought-induced accumulation, whereas triterpenoid abundance remained predominantly unchanged. Structural analysis of drought-responsive root diterpenoids verified these metabolites as oxygenated furanoditerpenoids. ⋅ Drought-dependent transcriptome and metabolite profiles provide the foundation to understand the molecular mechanisms underlying switchgrass environmental resilience. Accumulation of specialized root diterpenoids and corresponding pathway transcripts supports a role in drought stress tolerance for these compounds

    The tomato terpene synthase gene family

    Get PDF
    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far

    Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    Get PDF
    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph

    TNF-related apoptosis-inducing ligand, interferon gamma-induced protein 10, and C-reactive protein in predicting the progression of SARS-CoV-2 infection : a prospective cohort study

    Get PDF
    Background: Early prognostication of COVID-19 severity will potentially improve patient care. Biomarkers, such as TNF-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein 10 (IP-10), and C-reactive protein (CRP), might represent possible tools for point-of-care testing and severity prediction. Methods: In this prospective cohort study, we analyzed serum levels of TRAIL, IP-10, and CRP in patients with COVID-19, compared them with control subjects, and investigated the association with disease sever ity. Results: A total of 899 measurements were performed in 132 patients (mean age 64 years, 40.2% females). Among patients with COVID-19, TRAIL levels were lower (49.5 vs 87 pg/ml, P = 0.0142), whereas IP-10 and CRP showed higher levels (667.5 vs 127 pg/ml, P <0.001; 75.3 vs 1.6 mg/l, P <0.001) than healthy controls. TRAIL yielded an inverse correlation with length of hospital and intensive care unit (ICU) stay, Simplified Acute Physiology Score II, and National Early Warning Score, and IP-10 showed a positive cor relation with disease severity. Multivariable regression revealed that obesity (adjusted odds ratio [aOR] 5.434, 95% confidence interval [CI] 1.005-29.38), CRP (aOR 1.014, 95% CI 1.002-1.027), and peak IP-10 (aOR 1.001, 95% CI 1.00-1.002) were independent predictors of in-ICU mortality

    Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

    Get PDF
    Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes
    corecore