33 research outputs found
Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information
Funding Information: This work was supported by the National Institute of Mental Health / U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium ), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience . Statistical analyses were carried out on the LISA/Genetic Cluster Computer ( https://userinfo.surfsara.nl/systems/lisa ) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. Funding Information: MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc., RallyPoint Networks, Inc., Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Funding Information: This work was supported by the National Institute of Mental Health/ U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience. Statistical analyses were carried out on the LISA/Genetic Cluster Computer (https://userinfo.surfsara.nl/systems/lisa) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. This material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the U.S. Department of the Army or the Department of Defense. We thank the investigators who comprise the PGC-PTSD working group and especially the more than 206,000 research participants worldwide who shared their life experiences and biological samples with PGC-PTSD investigators. We thank Mark Zervas for his critical input. Full acknowledgments are in Supplement 1. MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc. RallyPoint Networks, Inc. Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled ?Genotype-guided dosing of opioid agonists,? filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Publisher Copyright: © 2021 Society of Biological PsychiatryBackground: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods.publishersversionpublishe
Disposition of Caspofungin: Role of Distribution in Determining Pharmacokinetics in Plasma
The disposition of caspofungin, a parenteral antifungal drug, was investigated. Following a single, 1-h, intravenous infusion of 70 mg (200 μCi) of [(3)H]caspofungin to healthy men, plasma, urine, and feces were collected over 27 days in study A (n = 6) and plasma was collected over 26 weeks in study B (n = 7). Supportive data were obtained from a single-dose [(3)H]caspofungin tissue distribution study in rats (n = 3 animals/time point). Over 27 days in humans, 75.4% of radioactivity was recovered in urine (40.7%) and feces (34.4%). A long terminal phase (t(1/2) = 14.6 days) characterized much of the plasma drug profile of radioactivity, which remained quantifiable to 22.3 weeks. Mass balance calculations indicated that radioactivity in tissues peaked at 1.5 to 2 days at ∼92% of the dose, and the rate of radioactivity excretion peaked at 6 to 7 days. Metabolism and excretion of caspofungin were very slow processes, and very little excretion or biotransformation occurred in the first 24 to 30 h postdose. Most of the area under the concentration-time curve of caspofungin was accounted for during this period, consistent with distribution-controlled clearance. The apparent distribution volume during this period indicated that this distribution process is uptake into tissue cells. Radioactivity was widely distributed in rats, with the highest concentrations in liver, kidney, lung, and spleen. Liver exhibited an extended uptake phase, peaking at 24 h with 35% of total dose in liver. The plasma profile of caspofungin is determined primarily by the rate of distribution of caspofungin from plasma into tissues
Recommended from our members
The Influence of Hepatic and Renal Impairment on the Pharmacokinetics of a Treatment for Herpes Zoster, Amenamevir (ASP2151): Phase 1, Open-Label, Single-Dose, Parallel-Group Studies
<h2>Article full text</h2><p>The full text of this article can be found here <a href="https://link.springer.com/article/10.1007/s12325-017-0643-3">https://link.springer.com/article/10.1007/s12325-017-0643-3</a>.</p><h2>Provide enhanced content for this article</h2><p>If you are an author of this publication and would like to provide additional enhanced content for your article then please contact <a href="http://www.medengine.com/Redeem/âmailto:[email protected]â">[email protected]</a>.</p><p>The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.</p><p>Other enhanced features include, but are not limited to:</p><ul><li>Slide decks</li><li>Videos and animations</li><li>Audio abstracts</li><li>Audio slides</li></ul
Influence of renal and hepatic impairment on the pharmacokinetics of anacetrapib
Two open‐label, parallel‐group studies evaluated the influence of renal and hepatic insufficiency on the pharmacokinetics of a single‐dose anacetrapib 100 mg. Eligible participants included adult men and women with moderate hepatic impairment (assessed by Child–Pugh criteria) or severe renal impairment (CrCl <30 mL/min/1.73 m2). In both studies, patients were matched (race, age, sex, BMI) with healthy control subjects. Twenty‐four subjects were randomized in each study (12 with either moderate hepatic or severe renal impairment and 12 matched healthy controls). In the hepatic insufficiency study, the geometric mean ratio (GMR; mean value for the group with moderate hepatic insufficiency/mean value for the healthy controls) and 90% CIs for the area under the concentration–time curve from time zero to infinity (AUC0–∞) and the maximum concentration of drug in plasma (Cmax) were 1.16 (0.84, 1.60) and 1.02 (0.71, 1.49), respectively. In the renal insufficiency study, the GMRs (mean value for the group with severe renal insufficiency/mean value for the healthy controls) and 90% CIs for AUC0–∞ and Cmax were 1.14 (0.80, 1.63) and 1.31 (0.93, 1.83), respectively. Anacetrapib was generally well tolerated and there was no clinically meaningful effect of moderate hepatic or severe renal insufficiency on the pharmacokinetics of anacetrapib
Potential for Interactions between Caspofungin and Nelfinavir or Rifampin
The potential for interactions between caspofungin and nelfinavir or rifampin was evaluated in two parallel-panel studies. In study A, healthy subjects received a 14-day course of caspofungin alone (50 mg administered intravenously [IV] once daily) (n = 10) or with nelfinavir (1,250 mg administered orally twice daily) (n = 9) or rifampin (600 mg administered orally once daily) (n = 10). In study B, 14 subjects received a 28-day course of rifampin (600 mg administered orally once daily), with caspofungin (50 mg administered IV once daily) coadministered on the last 14 days, and 12 subjects received a 14-day course of caspofungin alone (50 mg administered IV once daily). The coadministration/administration alone geometric mean ratio for the caspofungin area under the time-concentration profile calculated for the 24-h period following dosing [AUC(0-24)] was as follows (values in parentheses are 90% confidence intervals [CIs]): 1.08 (0.93-1.26) for nelfinavir, 1.12 (0.97-1.30) for rifampin (study A), and 1.01 (0.91-1.11) for rifampin (study B). The shape of the caspofungin plasma profile was altered by rifampin, resulting in a 14 to 31% reduction in the trough concentration at 24 h after dosing (C(24h)), consistent with a net induction effect at steady state. Both the AUC and the C(24h) were elevated in the initial days of rifampin coadministration in study A (61 and 170% elevations, respectively, on day 1) but not in study B, consistent with transient net inhibition prior to full induction. The coadministration/administration alone geometric mean ratio for the rifampin AUC(0-24) on day 14 was 1.07 (90% CI, 0.83-1.38). Nelfinavir does not meaningfully alter caspofungin pharmacokinetics. Rifampin both inhibits and induces caspofungin disposition, resulting in a reduced C(24h) at steady state. An increase in the caspofungin dose to 70 mg, administered daily, should be considered when the drug is coadministered with rifampin
Lack of a Significant Drug Interaction between Raltegravir and Tenofovir▿
Raltegravir is a novel human immunodeficiency virus type 1 (HIV-1) integrase inhibitor with potent in vitro activity (95% inhibitory concentration of 31 nM in 50% human serum). This article reports the results of an open-label, sequential, three-period study of healthy subjects. Period 1 involved raltegravir at 400 mg twice daily for 4 days, period 2 involved tenofovir disoproxil fumarate (TDF) at 300 mg once daily for 7 days, and period 3 involved raltegravir at 400 mg twice daily plus TDF at 300 mg once daily for 4 days. Pharmacokinetic profiles were also determined in HIV-1-infected patients dosed with raltegravir monotherapy versus raltegravir in combination with TDF and lamivudine. There was no clinically significant effect of TDF on raltegravir. The raltegravir area under the concentration time curve from 0 to 12 h (AUC0-12) and peak plasma drug concentration (Cmax) were modestly increased in healthy subjects (geometric mean ratios [GMRs], 1.49 and 1.64, respectively). There was no substantial effect of TDF on raltegravir concentration at 12 h postdose (C12) in healthy subjects (GMR [TDF plus raltegravir-raltegravir alone], 1.03; 90% confidence interval [CI], 0.73 to 1.45), while a modest increase (GMR, 1.42; 90% CI, 0.89 to 2.28) was seen in HIV-1-infected patients. Raltegravir had no substantial effect on tenofovir pharmacokinetics: C24, AUC, and Cmax GMRs were 0.87, 0.90, and 0.77, respectively. Coadministration of raltegravir and TDF does not change the pharmacokinetics of either drug to a clinically meaningful degree. Raltegravir and TDF may be coadministered without dose adjustments
Odanacatib, a selective cathepsin K inhibitor to treat osteoporosis: safety, tolerability, pharmacokinetics and pharmacodynamics: results from single oral dose studies in healthy volunteers
Aims: To evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of odanacatib (ODN), a cathepsin K inhibitor, in humans.
Methods: Two double-blind, randomized, placebo-controlled, single oral dose studies were performed with ODN (2600mg) in 44 healthy volunteers (36 men and eight postmenopausal women).
Results: Adverse experiences (AEs) with single doses of ODN were transient and mild to moderate, with the exception of one severe AE of gastroenteritis. Headache was the most frequent AE. After absorption of ODN (initial peak concentrations 46h postdose), plasma concentrations exhibited a monophasic decline, with an apparent terminal half-life of approximate to 4080h. The area under the curve0-24 hours (AUC024h), concentration at 24 hours (C24h) and maximum concentration (Cmax,overal) increased in a less than dose-proportional manner from 2 to 600mg. Administration of ODN with a high-fat meal led to approximate to 100% increases in AUC024h, Cmax,day1, Cmax,overall and C24h relative to the fasted state, while administration with a low-fat meal led to a approximate to 30% increase in those parameters. Reduction of biomarkers of bone resorption, the C- and N-telopeptides of cross-links of type I collagen, (CTx and NTx, respectively), was noted at 24h for doses 5mg and at 168h postdose for 10mg. In postmenopausal women administered 50mg ODN, reductions in serum CTx of 66% and urine NTx/creatinine (uNTx/Cr) of 51% relative to placebo were observed at 24h. At 168h, reductions in serum CTx (70%) and uNTx/Cr (78%) were observed relative to baseline. Pharmacokinetic/pharmacodynamic modeling characterized the ODN concentration/uNTx/Cr relation, with a modeled EC50 value of 43.8nM and approximate to 80% maximal reduction.
Conclusions: Odanacatib was well tolerated and has a pharmacokinetic and pharmacodynamic profile suitable for once weekly dosing