529 research outputs found

    Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures

    Get PDF
    In this study, the effect of nanoparticle concentration was tested for both CuO and TiO2 in eutectic mixture of sodium and potassium nitrate. Results showed an enhancement in specific heat capacity (Cp) for both types of nanoparticles (+10.48% at 440 °C for 0.1 wt % CuO and +4.95% at 440 °C for 0.5 wt % TiO2) but the behavior toward a rise in concentration was different with CuO displaying its highest enhancement at the lowest concentration whilst TiO2 showed no concentration dependence for three of the four different concentrations tested. The production of cluster of nanoparticles was visible in CuO but not in TiO2. This formation of nanostructure in molten salt might promote the enhancement in Cp. However, the size and shape of these structures will most likely impact the energy density of the molten salt

    Nitrate based high temperature nano-heat-transfer-fluids: formulation & characterisation

    Get PDF
    This work relates to the development of high temperature heat-transfer-fluid with enhanced specific heat capacity using nano-particle additives. A eutectic mixture of nitrate (60 wt% NaNO3 & 40 wt% KNO3) was produced through ball-milling and characterised on DSC, TGA, Rheometer. The results obtained showed that the salt mixture melted at 221°C with a heat of fusion of 97 J/g. Onset of melting was seen at 215°C whilst crystallisation started at 219°C, reaching a solid state below 217°C with an enthalpy of 97 J/g. Displaying very little overcooling, the salt showed specific heat capacity of 1.41 J/[°C*g] at 260°C to 1.44 J/[°C*g] at 440°C with viscosity values changing from 4.8 cP at 250°C to 1.7 cP at 450°C for this Newtonian fluid. Thermal decomposition of the salt showed that it was stable up to 550°C. The addition of nano-particles displayed an overall positive effect toward the specific heat capacity enhancing the latter whilst reducing the onset of melting due to increased entropy. The addition of 0.1, 0,5 and 1.0 wt% copper oxide gave the best results with increase of 10.5%, 9,2% and 8,5% in specific heat capacity respectively. SEM analysis of the samples showed that the nano-particles clearly disrupted the crystallisation structure showing a rougher organisation. Rheological tests on 0.1 wt% CuO demonstrated a slight rise in viscosity due to the addition of nano-particles. The stability of 0.1 wt% CuO was tested in large scale rigs (>1.0 kg) and demonstrated that sedimentation of nano-particles did occur. Different manner of dispersion were tested and revealed that they each affected the specific heat capacity differently with some causing negative enhancements whilst others were positive. The method of production did not affect the specific heat capacity values, and current theories point toward the formation of liquid nano-layers as a reason toward this increase

    In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Get PDF
    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts

    Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity

    Get PDF
    This paper is focused on the characterisation and demonstration of Newtonian behaviour of salt at both high and low shear rate for sodium and potassium nitrate eutectic mixture (60/40) ranging from 250 °C to 500 °C. Analysis of published and experimental data was carried out to correlate all the numbers into one meaningful 4th order polynomial equation. Addition of a low amount of copper oxide nanoparticles to the mixture increased viscosity of 5.0%–18.0% compared to the latter equation

    Compact infrared cryogenic wafer-level camera: design and experimental validation

    Get PDF
    International audienceWe present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120 degrees. By merging the optics with the detector, the concept is compatible with both cryogenic constraints and wafer-level fabrication. The design strategy of such a camera is described, as well as its fabrication and integration process. Its characterization has been carried out in terms of the modulation transfer function and the noise equivalent temperature difference (NETD). The optical system is limited by the diffraction. By cooling the optics, we achieve a very low NETD equal to 15 mK compared with traditional infrared cameras. A postprocessing algorithm that aims at reconstructing a well-sampled image from the set of undersampled raw subimages produced by the camera is proposed and validated on experimental images. (C) 2012 Optical Society of Americ

    Management of Internal Root Resorption on Permanent Teeth

    Get PDF
    Internal root resorption (IRR) is a particular category of pulp disease characterized by the loss of dentine as a result of the action of clastic cells stimulated by pulpal inflammation. This review article explains the etiology, the prevalence of IRR, and, in addition to the clinical data, the contribution of the three-dimensional imaging (CBCT) to the diagnosis, the clinical decision, and the therapeutic management of IRR. The authors discussed the various therapeutic options including the orthograde or retrograde fillings of the root canal resorption area. Root canal treatment remains the treatment of choice of internal root resorption as it removes the granulation tissue and blood supply of the clastic cells. The authors describe with different clinical cases the modern endodontic techniques including optical aids, ultrasonic improvement of chemical debridement, and the use of alternative materials such as calcium silicate combined with thermoplastic filling (warm gutta-percha). In these conditions, the prognosis of the conservative treatment of internal resorptions, even if root walls are perforated, is good

    Development of a Connected Sensor System in Colorectal Surgery:User-Centered Design Case Study

    Get PDF
    BACKGROUND: A successful innovative medical device is not only technically challenging to develop but must also be readily usable to be integrated into health care professionals’ daily practice. Through a user-centered design (UCD) approach, usability can be improved. However, this type of approach is not widely implemented from the early stages of medical device development. OBJECTIVE: The case study presented here shows how UCD may be applied at the very early stage of the design of a disruptive medical device used in a complex hospital environment, while no functional device is available yet. The device under study is a connected sensor system to detect colorectal anastomotic leakage, the most detrimental complication following colorectal surgery, which has a high medical cost. We also aimed to provide usability guidelines for the initial design of other innovative medical devices. METHODS: UCD was implemented by actively involving health care professionals and all the industrial partners of the project. The methodology was conducted in 2 European hospitals: Grenoble-Alpes University Hospital (France) and Erasmus Medical Center Rotterdam (the Netherlands). A total of 6 elective colorectal procedures and 5 ward shifts were observed. In total, 4 workshops were conducted with project partners and clinicians. A formative evaluation was performed based on 5 usability tests using nonfunctional prototype systems. The case study was completed within 12 months. RESULTS: Functional specifications were defined for the various components of the medical device: device weight, size, design, device attachment, and display module. These specifications consider the future integration of the medical device into current clinical practice (for use in an operating room and patient follow-up inside the hospital) and interactions between surgeons, nurses, nurse assistants, and patients. By avoiding irrelevant technical development, this approach helps to promote cost-effective design. CONCLUSIONS: This paper presents the successful deployment over 12 months of a UCD methodology for the design of an innovative medical device during its early development phase. To help in reusing this methodology to design other innovative medical devices, we suggested best practices based on this case
    • …
    corecore