90 research outputs found

    Speleogenesis of large flank margin caves of the Bahamas

    Get PDF
    Flank margin caves of the Bahamas are formed by mixing dissolution in a fresh-water lens. As they evolve, the probability of intersecting neighboring voids increases, and they enlarge in a nonlinear fashion. Large flank margin caves become constrained by surface topography and their morphology is influenced by the shape of the enclosing land mass as a result. High phreatic ceilings can be dissolved if the fresh-water lens is distorted by lithological heterogeneities or hydrologic loading due to storm events. Early diagenesis of the host rock causes the reorganization of porosity and permeability through dissolution and cementation processes. Meteoric overprinting occurs but cannot be used as a tool in determining the age of eolianites or the climatic conditions at the time of deposition. Current evidence indicates an OIS 5e speleogenesis of large flank margin caves. An OIS 11 origin can be advanced only with compelling evidence of a pre-OIS 5e highstand

    Magnetic mineral populations in lower oceanic crustal gabbros (Atlantis Bank, SW Indian Ridge): implications for marine magnetic anomalies

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(3), (2020): e2019GC008847, doi:10.1029/2019GC008847.To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on whole rocks and mineral separates included magnetic hysteresis, firstā€order reversal curves, lowā€temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy. Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with earlier observations from Hole 735B that show remanence arises from lowā€Ti magnetite and that natural remanent magnetizations are up to 25 A māˆ’1 in evolved Feā€Ti oxide gabbros, but are mostly <1 A māˆ’1. Magnetite is present in at least three forms. Primary magnetite is associated with coarseā€grained oxides that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly ā€œpseudoā€singleā€domainā€ behavior that arises from fineā€scale lamellar intergrowths within the large oxides. Deeper in the hole the magnetic signal is more commonly dominated by an interacting singleā€domain assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution is from noninteracting singleā€domain inclusions within plagioclase. Because the concentration of the highly magnetic, oxideā€rich gabbros is greatest toward the surface, the signal from coarse oxides will likely dominate the nearā€bottom magnetic anomaly signal at Atlantis Bank.This work used samples and data provided by the International Ocean Discovery Program. Funding was provided by the U.S. Science Support Program (J.B.). I.L. has benefited from a Smithsonian Edward and Helen Hintz Secretarial Scholarship. We thank the members of the IODP Expedition 360 Science Party, and the captain and crew of the JOIDES Resolution. Part of this work was done as a Visiting Fellow at the Institute for Rock Magnetism (IRM) at the University of Minnesota. The IRM is made possible through the Instrumentation and Facilities program of the National Science Foundation, Earth Sciences Division, and by funding from the University of Minnesota. We would like to thank IRM staff M. Jackson, P. Solheid, and D. Bilardello for their generous assistance. Many thanks to A. Butula, K. Vernon, and J. Marquardt for their assistance with rock magnetic measurements at UWM and to L. McHenry for assistance with XRD. We also thank two anonymous reviewers for their thoughtful comments that improved the manuscript. Magnetic data associated with this manuscript are available in the Magnetics Information Consortium (MagIC) database at https://www.earthref.org/MagIC/doi/10.1029/2019GC008847. XRD data are available at https://zenodo.org/record/3611642.2020-08-2

    Magnetic Mineral Populations in Lower Oceanic Crustal Gabbros (Atlantis Bank, SW Indian Ridge): Implications for Marine Magnetic Anomalies

    Get PDF
    To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on whole rocks and mineral separates included magnetic hysteresis, firstā€order reversal curves, lowā€temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy. Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with earlier observations from Hole 735B that show remanence arises from lowā€Ti magnetite and that natural remanent magnetizations are up to 25 A māˆ’1 in evolved Feā€Ti oxide gabbros, but are mostly \u3c1 A māˆ’1. Magnetite is present in at least three forms. Primary magnetite is associated with coarseā€grained oxides that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly ā€œpseudoā€singleā€domainā€ behavior that arises from fineā€scale lamellar intergrowths within the large oxides. Deeper in the hole the magnetic signal is more commonly dominated by an interacting singleā€domain assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution is from noninteracting singleā€domain inclusions within plagioclase. Because the concentration of the highly magnetic, oxideā€rich gabbros is greatest toward the surface, the signal from coarse oxides will likely dominate the nearā€bottom magnetic anomaly signal at Atlantis Bank

    The vortex state in geologic materials: a micromagnetic perspective

    Get PDF
    A wide variety of Earth and planetary materials are very good recorders of paleomagnetic information. However, most magnetic grains in these materials are not in the stable single domain grain size range but are larger and in nonuniform vortex magnetization states. We provide a detailed account of vortex phenomena in geologic materials by simulating firstā€order reversal curves (FORCs) via finiteā€element micromagnetic modeling of magnetite nanoparticles with realistic morphologies. The particles have been reconstructed from focused ion beam nanotomography of magnetiteā€bearing obsidian and accommodate single and multiple vortex structures. Single vortex (SV) grains have fingerprints with contributions to both the transient and transientā€free zones of FORC diagrams. A fundamental feature of the SV fingerprint is a central ridge, representing a distribution of negative saturation vortex annihilation fields. SV irreversible events at multiple field values along different FORC branches determine the asymmetry in the upper and lower lobes of generic bulk FORC diagrams of natural materials with grains predominantly in the vortex state. Multivortex (MV) FORC signatures are modeled here for the first time. MV grains contribute mostly to the transientā€free zone of a FORC diagram, averaging out to create a broad central peak. The intensity of the central peak is higher than that of the lobes, implying that MV particles are more abundant than SV particles in geologic materials with vortex state fingerprints. The abundance of MV particles, as well as their single domainā€like properties point to MV grains being the main natural remanent magnetization carriers in geologic materials

    Deconvolution of u channel magnetometer data: Experimental study of accuracy, resolution, and stability of different inversion methods

    Get PDF
    We explore the effects of sampling density, signal/noise ratios, and position-dependent measurement errors on deconvolution calculations for u channel magnetometer data, using a combination of experimental and numerical approaches. Experiments involve a synthetic sample set made by setting hydraulic cement in a 30-cm u channel and slicing the hardened material into ~2-cm lengths, and a natural lake sediment u channel sample. The cement segments can be magnetized and measured individually, and reassembled for continuous u channel measurement and deconvolution; the lake sediment channel was first measured continuously and then sliced into discrete samples for individual measurement. Each continuous data set was deconvolved using the ABIC minimization code of Oda and Shibuya (1996) and two new approaches that we have developed, using singular-value decomposition and regularized least squares. These involve somewhat different methods to stabilize the inverse calculations and different criteria for identifying the optimum solution, but we find in all of our experiments that the three methods converge to essentially identical solutions. Repeat scans in several experiments show that measurement errors are not distributed with position-independent variance; errors in setting/determining the u channel position (standard deviation ~0.2 mm) translate in regions of strong gradients into measurement uncertainties much larger than those due to instrument noise and drift. When we incorporate these depth-dependent measurement uncertainties into the deconvolution calculations, the resulting models show decreased stability and accuracy compared to inversions assuming depth-independent measurement errors. The cement experiments involved varying directions and uniform intensities downcore, and very good accuracy was obtained using all of the methods when the signal/noise ratio was greater than a few hundred and the sampling interval no larger than half the length scale of magnetization changes. Addition of synthetic noise or reduction of sampling density decreased the resolution and accuracy of all the methods equally. The sediment-core experiment involved uniform (axial) magnetization direction and strongly varying intensities downcore. Intensity variations are well resolved and directions are accurate to within about 5 degrees, with errors attributable to omission and/or inaccurate calibration of cross terms in the instrument response function

    An Improved Algorithm For Unmixing Firstā€Order Reversal Curve Diagrams Using Principal Component Analysis

    Get PDF
    Firstā€order reversal curve (FORC) diagrams of synthetic binary mixtures with singleā€domain, vortex state, and multiā€domain end members (EMs) were analyzed using principal component analysis (FORCā€PCA). Mixing proportions derived from FORCā€PCA are shown to deviate systematically from the known weight percent of EMs, which is caused by the lack of reversible magnetization contributions to the FORC distribution. The error in the mixing proportions can be corrected by applying PCA to the raw FORCs, rather than to the processed FORC diagram, thereby capturing both reversible and irreversible contributions to the signal. Here we develop a new practical implementation of the FORCā€PCA method that enables quantitative unmixing to be performed routinely on suites of FORC diagrams with up to four distinct EMs. The method provides access not only to the processed FORC diagram of each EM, but also to reconstructed FORCs, which enables objective criteria to be defined that aid identification of physically realistic EMs. We illustrate FORCā€PCA with examples of quantitative unmixing of magnetic components that will have widespread applicability in paleomagnetism and environmental magnetism

    Influences of forested and grassland vegetation on late Quaternary ecosystem development as recorded in lacustrine sediments

    Get PDF
    Geosphere-biosphere interactions are ubiquitous features of the Earth surface, yet the development of interactions between newly exposed lithologic surfaces and colonizing plants during primary succession after glaciation are lacking temporal detail. To assess the nature, rate, and magnitude of vegetation influence on parent material and sediment delivery, we analyzed ecosystem and geochemical proxies from lacustrine sediment cores at a grassland site and a forested site in the northern United States. Over time, terrigenous inputs declined at both sites, with increasing amounts of organic inputs toward present. The similarities between sites were striking given that the grassland sequence began in the Early Holocene, and the forested sequence began after the last glacial maximum. Multiple mechanisms of chemical weathering, hydrologic transport, and changes in source material potentially contribute to this pattern. Although there were strong links between vegetation composition and nitrogen cycling at each site, it appears that changes in forest type, or from oak woodland to grassland, did not exert a large influence on elemental (K, Ti, Si, Ca, Fe, Mn, and S) abundance in the sedimentary sequences. Rather, other factors in the catchment-lake system determined the temporal sequence of elemental abundance

    Synthetic Genes for Artificial Ants. Diversity in Ant Colony Optimization Algorithms

    Get PDF
    Inspired from the fact that the real world ants from within a colony are not clones (although they may look alike, they are different from one another), in this paper, the authors are presenting an adapted ant colony optimisation (ACO) algorithm that incorporates methods and ideas from genetic algorithms (GA). Following the first (introductory) section of the paper is presented the history and the state of the art, beginning with the stigmergy and genetic concepts and ending with the latest ACO algorithm variants as multiagent systems (MAS). The rationale and the approach sections are aiming at presenting the problems with current stigmergy-based algorithms and at proposing a (possible - yet to be fully verified) solution to some of the problems ("synthetic genes" for artificial ants). A model used for validating the proposed solution is presented in the next section together with some preliminary simulation results. Some of the conclusions regarding the main subject of the paper (synthetic genes: agents within the MAS with different behaviours) that are closing the paper are: a) the convergence speed of the ACO algorithms can be improved using this approach; b) these "synthetic genes" can be easily implemented (as local variables or properties of the agents); c) the MAS is self-adapting to the specific problem that needs to be optimized
    • ā€¦
    corecore