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Deconvolution of u channel magnetometer data:
Experimental study of accuracy, resolution, and stability
of different inversion methods
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Institute for Rock Magnetism, Department of Geology and Geophysics, University of Minnesota, 291 Shepherd
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[1] We explore the effects of sampling density, signal/noise ratios, and position‐dependent measurement
errors on deconvolution calculations for u channel magnetometer data, using a combination of experimen-
tal and numerical approaches. Experiments involve a synthetic sample set made by setting hydraulic
cement in a 30‐cm u channel and slicing the hardened material into ∼2‐cm lengths, and a natural lake sed-
iment u channel sample. The cement segments can be magnetized and measured individually, and reas-
sembled for continuous u channel measurement and deconvolution; the lake sediment channel was first
measured continuously and then sliced into discrete samples for individual measurement. Each continuous
data set was deconvolved using the ABIC minimization code of Oda and Shibuya (1996) and two new
approaches that we have developed, using singular‐value decomposition and regularized least squares.
These involve somewhat different methods to stabilize the inverse calculations and different criteria for
identifying the optimum solution, but we find in all of our experiments that the three methods converge
to essentially identical solutions. Repeat scans in several experiments show that measurement errors are
not distributed with position‐independent variance; errors in setting/determining the u channel position
(standard deviation ∼0.2 mm) translate in regions of strong gradients into measurement uncertainties much
larger than those due to instrument noise and drift. When we incorporate these depth‐dependent measure-
ment uncertainties into the deconvolution calculations, the resulting models show decreased stability and
accuracy compared to inversions assuming depth‐independent measurement errors. The cement experi-
ments involved varying directions and uniform intensities downcore, and very good accuracy was obtained
using all of the methods when the signal/noise ratio was greater than a few hundred and the sampling inter-
val no larger than half the length scale of magnetization changes. Addition of synthetic noise or reduction
of sampling density decreased the resolution and accuracy of all the methods equally. The sediment‐core
experiment involved uniform (axial) magnetization direction and strongly varying intensities downcore.
Intensity variations are well resolved and directions are accurate to within about 5 degrees, with errors
attributable to omission and/or inaccurate calibration of cross terms in the instrument response function.
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1. Introduction

[2] Continuous sediment cores are among the most
important sources of information on paleomagnetic
field behavior, offering the possibility of high‐
resolution records of the changing field orientation
and strength through time [Tauxe et al., 1983;Weeks
et al., 1993; Roberts, 2006]. As is well known,
however, the paleofield signal can be modified by
filtering effects, both during the recording process
(lock‐in over an interval of depth and time [e.g.,
Teanby and Gubbins, 2000; Roberts and Winklhofer,
2004; Liu et al., 2008; Shcherbakov and Sycheva,
2010]) and during measurement on long‐core mag-
netometers with broad (∼decimeter) sensitivity
functions (i.e., convolution [Dodson et al., 1974;
Constable and Parker, 1991; Oda and Shibuya,
1996]). The filter function of the magnetometer
can be determined from experimental data [e.g.,
Parker and Gee, 2002] or by numerical calculation
[Shibuya and Michikawa, 2000], and its effects can
be removed by deconvolution [Dodson et al., 1974;
Constable and Parker, 1991; Weeks et al., 1993;
Oda and Shibuya, 1996; Guyodo et al., 2002].

[3] The accuracy and reliability of deconvolution
calculations depend on the validity of several key
assumptions, including: (a) that the measurement
errors have a Gaussian distribution with zero mean,
independent of measurement position; (b) that
magnetization intensity and orientation vary only
as a function of depth ~M (z); (c) that the variations in
~M (z) are reasonably smooth and that the smoothness
of the magnetization is similar throughout the core
and (d) that the instrument response function is
accurately known. Relatively few published studies
have directly tested the validity of magnetization
models derived by deconvolution of continuous‐
core measurements [Constable and Parker, 1991;
Weeks et al., 1993; Oda and Shibuya, 1996;
Guyodo et al., 2002], and comparison with dis-
crete‐sample measurements has generally shown
agreement ranging from fair to very good. Oda and
Shibuya [1996] compared their deconvolved split‐
core record with discrete‐sample data of Schneider

et al. [1992], and concluded that assumptions b
and d above were not completely fulfilled in their
study, constituting the largest sources of inaccuracy
in their deconvolution results. Guyodo et al. [2002]
cut 1‐cm slices from a u channel after continuous
measurements; the slices showed considerably
more variability than the deconvolved u channel
record, and they attributed the differences to possi-
ble disturbance and position errors during sub-
sampling, or incomplete accuracy in their response
function model. Weeks et al. [1993] measured a set
of discrete 2 × 2 × 2 cm cubes before assembling
them into a “train” for measurement as a continu-
ous core, which yielded a deconvolved magnetiza-
tion distribution in quite good directional agreement
with the discrete measurements, but somewhat less
good agreement with regard to intensity.

[4] In this study we use experimental methods
similar to those of Weeks et al. [1993] to evaluate
several numerical approaches to deconvolution. We
employ the ABIC‐minimization code of Oda and
Shibuya [1996], which was also used by Guyodo
et al. [2002], and which remains the state of the
art. This software treats the response function as a
tensor [e.g., Parker and Gee, 2002], albeit incom-
pletely; i.e., it accommodates the magnetometer
x‐sensor response to the x‐ and z‐components
of magnetization, the y‐sensor response to the
y‐component alone, and the z‐sensor response to
the x‐ and z‐components of magnetization. Like
the Constable and Parker [1991] approach, that of
Oda and Shibuya [1996] treats measurement errors
as independent of position in the scan, and it
includes an explicit term to minimize second dif-
ferences in the deconvolved magnetization model.
We develop two alternative algorithms in which we
(a) include the full tensor response; (b) allow
measurement errors to have systematic dependence
on position; and (c) constrain the inverse calculations
to minimize total model size rather than second
differences. We use our new experimental results
to observe the effects of each of these changes in
processing approach, and find that despite the dif-
ferences of algorithms and weighting factors, we
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obtain very consistent magnetization models from
each experiment.

2. Convolution and Deconvolution:
Discrete Model

2.1. Forward Problem
[5] The data set consists of vectors ~D1, ~D2, � � � ~Dn

measured in positions 1 through n, which include
“leader” and “trailer” positions extending beyond
the top and bottom of the core. The magnetization
distribution in the core is assumed to vary only in
the z direction (along the core axis), and is
represented in discrete form by the set of vectors
~M1, ~M2, � � � ~Mm; these are conventionally consid-
ered as the magnetizations of m infinitesimal‐
length volume elements spaced equally over the
core length. It simplifies matters when the spacing
between measurements equals that between model
elements, and we follow Constable and Parker
[1991] and Oda and Shibuya [1996] in making
this simplification.

[6] Each measured vector ~Di is a superposition of
responses to all of the individual discrete‐element
magnetizations, plus an unknown error:

~Di ¼
Xm
j¼1

Rij
~Mj þ~ei ð1aÞ

The response function specifies the relationship
between the magnetization vectors and the mea-
surement vectors, and it is thus quantified as a set
of second‐rank tensors, which are not necessarily
symmetric. The “equation of observation” [Oda
and Shibuya, 1996] for the full data set is:

~D1

..

.

~Dn

0
B@

1
CA ¼

R11 . . . R1m

..

. . .
. ..

.

Rn1 � � � Rnm

0
B@

1
CA

~M1

..

.

~Mm

0
B@

1
CAþ

~e1
..
.

~en

0
B@

1
CA ð1bÞ

or in compact form:

D ¼ RMþ e ð1cÞ

Each row of R specifies how the entire set of dis-
crete‐element magnetizations combine to produce a
single measurement vector. Each column of R
indicates how a single discrete‐element magneti-
zation contributes to the entire set of measurement
vectors. The column matrices D and M contain
respectively n and m elements, each of which is a
3‐element column vector; they are computationally
equivalent to column matrices with 3n and 3m
scalar elements. Similarly the matrix R, containing

n × m elements, each of which is a 3 × 3 tensor, is
“expanded” for subsequent computations into a
3n × 3m matrix of scalar elements.

2.2. Inverse Problem
[7] When the instrument response function is suf-
ficiently well known, a set of magnetization vectors
Mfit can be calculated for a continuous‐core data
set D by least squares methods. We wish to find the
set of best fit model parameters Mfit that minimizes

�2 ¼ Pn
i¼1

ðj~Di � D̂ij=�iÞ2 (where the D̂i are best fit

values calculated by convolution of R and Mfit),
and the si are the individual measurement uncer-
tainties (standard deviations). A direct least squares
solution is

Mfit ¼ ðrTrÞ�1rTd ð2aÞ

where

~di ¼ ~Di=�i ð2bÞ

and

rij ¼ Rij=�i: ð2cÞ

As is well known, however, this inverse calculation
is ill‐conditioned: it is strongly sensitive to even
very small amounts of measurement noise, and it
almost invariably results in Mfit models with wild
down‐core variations, unless additional constraints
are imposed [Constable and Parker, 1991; Oda
and Shibuya, 1994, 1996]. This numerical insta-
bility is an inevitable consequence of the geometry
of the sensing coils and sample flux, and the
resulting properties of R. The columns of R rep-
resent the “basis functions” of the unmixing prob-
lem and the ~M values are the set of coefficients to
be determined. Well‐conditioned inverse problems
have basis functions that are orthogonal (uncorre-
lated) or nearly so. For the deconvolution problem,
the basis functions all have identical shapes, and
each is shifted up or down with respect to the
others. The shifts for neighboring columns are
small compared to the response function width
(otherwise deconvolution would be unnecessary);
the higher the desired resolution, the stronger the
correlation of adjacent columns (with smaller shifts
and constant response function width) and the more
ill‐conditioned the inversion. Some form of addi-
tional constraint is therefore generally necessary to
obtain a stable solution.

[8] An explicit smoothness constraint imposed by
Constable and Parker [1991] and modified by Oda
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and Shibuya [1996] produces for each data set a
magnetization model that minimizes a weighted

sum of squared misfits
Pn
i¼1

j~Di � D̂ij2 and squared

second differences
Pm�1

j¼2
j2~Mj � ~Mj�1 � ~Mjþ1j2. This

form of constraint is particularly suitable because
second differences represent linear combinations of
model parameters that are relatively weakly con-
strained by the data; i.e., one can add an arbitrarily
large multiple of 2~M j − ~M j−1 − ~M j+1 to a magne-
tization model without producing correspondingly
large changes in the predicted data set. However,
second‐difference constraints are not the only rea-
sonable approach to stabilizing the inversion, and
we will evaluate two alternative methods here. The
real art in all of these constrained approaches is
finding the optimal degree of constraint. A simple
unconstrained least squares solution produces the
smallest possible misfits, which are usually attained
through extreme variations in the ~M (z) model.
Progressively stronger second‐derivative constraints
yield larger misfits but magnetization models that
are smoother. The tradeoff is optimized to produce
the smoothest possible model with misfits that
remain within the statistical uncertainty of the
measurements [Constable and Parker, 1991; Oda
and Shibuya, 1996; Guyodo et al., 2002]. In the
formulation of Oda and Shibuya [1996] the opti-
mization involves repeated least squares minimi-
zation of the quantity

S ¼
Xn
i¼1

j~Di � D̂ij2 þ u2
Xm�1

j¼2

j2~Mj � ~Mj�1 � ~Mjþ1j2 ð3Þ

using different values of the smoothing hyperpara-
meter u, calculating a Bayesian probability‐related
parameter (ABIC) for each solution, and using that
quantity to determine the optimal u and best overall
magnetization model.

[9] In both of these pioneering papers [Constable
and Parker, 1991; Oda and Shibuya, 1996] mea-
surement uncertainties were considered to be
dominated by high‐frequency Gaussian noise (after
taking care of recognizable and correctable errors
due to flux jumps and individual noise spikes [Oda
and Shibuya, 1996]). Random error magnitudes
were assumed to be independent of z (si = s). Here
we explore two simple alternative deconvolution
approaches that allow us to incorporate different
descriptions of measurement error and to evaluate
their effects. These simple approaches produce
reasonably smooth models without explicit second‐
derivative constraints, and we show experimentally

that they yield results having accuracy comparable
to that of the ABIC calculations. The first is based
on singular value decomposition (SVD) [e.g., Press
et al., 1986]. SVD decomposes r (or more generally,
the design matrix of any linear inverse problem) into
the product of a column‐orthogonal matrix U, a
diagonal matrix w, and a row‐orthogonal matrix
VT; the diagonal elements of w are the “singular
values.” Columns of V represent a set of orthogo-
nal vectors spanning the solution space, and the
corresponding singular values in effect measure the
resolvability of those vectors. For example, in an
underdetermined inverse problem, where the
number of unknowns exceeds the number of line-
arly independent equations, at least one of the
singular values is zero, and the corresponding
column(s) of V represent the “null space” of the
inversion: linear combinations of parameters that
can be added to a model without changing pre-
dicted data values at all. In such cases an infinite
number of exact solutions exist, and SVD‐based
inversion techniques return the smallest solution
vector, i.e., the one that minimizes the sum of
squared parameter values. In overdetermined pro-
blems, such as the deconvolution problem, small
singular values correspond to linear combinations
of parameters that are only weakly resolvable, i.e.,
combinations that when added to a model produce
only slight changes in predicted data. These can be
“zeroed out” in the calculation of the best fit model,
resulting in a slight increase in misfit but producing
a smoother model (as measured by total length of
the solution vector). As in the case of second‐
derivative constrained inversion, the optimal degree
of filtering produces the smoothest model that still
has misfits within the expected measurement error.
We can specify the degree of smoothing in terms
of the zeroing threshold z: a singular value wi is
set to zero when wi/wmax < z. Larger values of z
produce smoother models and larger misfits.

[10] The second alternative approach that we
investigate here is regularized least squares (RLS),
specifically Tikhonov‐Phillips regularization, which
is related to the Levenberg‐Marquardt method of
nonlinear inversion [e.g., Hansen, 1998]:

Mfit ¼ rTrþ GTG
� ��1

rTd ð4Þ

The Tikhonov matrix G is of a form chosen to
impose certain properties on the solution; forG = a I
(where I is the identity matrix and a is a damping
parameter) the calculation favors solutions with
small norms. Increasing the diagonal dominance of
rTr in effect causes the calculation to treat the basis
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functions as more orthogonal, reducing their inter-
changeability and stabilizing the inversion. Once
again the crux of the problem is to find an optimal
solution by appropriate choice of smoothing level.
ABIC minimization is rigorous but not simple to
adapt, so we consider two simple alternative ways
to define the optimum. First, we can find the sim-
plest model (smallest mean square parameter values
or second differences) that fits the data to within a
specified tolerance [Constable and Parker, 1991].
According to Oda and Shibuya [1996], this method
can become unstable if the error tolerance is inac-
curately specified. The second approach, and the
one that we use for both SVD and RLS, is based on
the trade‐off between fitting errors and smoothness.
We obtain a set of solutions with differing levels of
damping (z and a), calculate total misfit and model
size, and plot them on a tradeoff curve (as done for
example by Parker and Gee [2002]). The tradeoff
is favorable when the slope is steep (model size is
reduced rapidly with small increases in misfit) and
becomes unfavorable when the slope shallows. The
“knee” in the tradeoff curve, where its slope
changes sharply, corresponds to the optimal model.
This is equivalent to minimizing a weighted sum of
model size and misfit, analogous to equation (3).

[11] SVD optimization is very efficient; the design‐
matrix decomposition is performed once, and the
“backsubstitution” calculations with different zero-
ing thresholds (z) involve only straightforward
matrix multiplication. A relatively large number of
thresholds can therefore be used to define the tra-
deoff curve. For small z, the SVD calculations
yield results identical to those generated by direct
least squares solution (equation (2)), i.e., they give
the best possible fit but contain unrealistically large
downcore variations in magnetic direction and
intensity. Zeroing of progressively larger singular
values prior to backsubstitution initially results in
sharp decreases in model size (as measured, e.g., by
root‐mean square (rms) moment) with relatively
little degradation of the fit. Eventually z becomes
too large and the inversion is overdamped, pro-
ducing excessively smooth models with significant
lack of fit to the measured data. Optimization of the
RLS inversions works in the same way, but is
much more time‐consuming, because the matrix
inversion must be performed for each value of the
damping parameter a. Precise definition of the
knee location on the tradeoff curve would be most
rigorously done through something like the
Bayesian analysis of Oda and Shibuya [1996], but
we settle for a simple alternative, which we have
found by trial and error to work satisfactorily: we

increase the damping parameter (z or a) in sys-
tematic steps, calculating the model size M0 (mean
square magnetization intensity) and misfit " (mean
square residual) for each step, and define the
knee as the point where d(log(M0))/d(log(")) first
exceeds −0.2.

2.3. Estimates of Parameter Uncertainty
[12] The matrix C = (rTr)−1 (or, for RLS, (rTr +
GTG)−1) gives the variances and covariances of the
model parameters. The standard deviations for the
parameter estimates are therefore given by s(Mj) =ffiffiffiffiffiffi

Cjj
p

and the 95% confidence interval is Mfit,j ±
1.96s(Mj).

3. Response Function Determination
and Noise Characterization

3.1. Response Function
[13] The response function is determined primarily
by the geometry of the sensing coils and by that of
the superconducting shield, which affects the
geometry of the magnetic flux due to the sample
[Zięba, 1993; Shibuya and Michikawa, 2000]. The
axial (z) coils are circular, with a diameter of
∼85 mm, and the transverse sensors are saddle‐coil
pairs, formed on the same cylindrical core. In our u
channel magnetometer (2G model 755–1.65) the
axial‐coil pair separation is D = 24 mm, and the
saddle coils have a length L ∼ 68mm. This geometry
is intermediate between the “high homogeneity”
arrangement (D = 40 mm, L ∼ 100 mm) optimized
for discrete‐sample measurements and the “high‐
resolution” geometry (D = 10 mm, L ∼ 40 mm)
designed for maximum resolution of downcore
variations. Although the coil geometry is accurately
known, calculation of the instrument response
function from first principles is strongly compli-
cated by “image effects” related to the super-
conducting shield [Zięba, 1993; Shibuya and
Michikawa, 2000; Parker and Gee, 2002]. Our
magnetometer uses pulse‐tube cryocooling rather
than a liquid helium reservoir. The distinction is
important here because the geometry of the super-
conducting shield in the “dry” instruments is dif-
ferent than that in the conventional liquid‐filled
magnetometers, and the instrument response func-
tion consequently differs in subtle ways (B. Goree,
personal communication, 2005) that nevertheless
are critical for accurate deconvolution.

[14] Empirical determination of the instrument
response is most simply and commonly determined
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by direct measurement. A thin slice of uniformly
magnetizable material, having the same cross‐
sectional dimensions as those of a u channel sample,
is magnetized precisely along each axis (x, y and z)
in turn and measured in “continuous” scans (e.g., at
5‐mm intervals) over a range extending at least
10 cm either way from the center of the sensing
coils. This shows directly how (for example) the
x‐coils respond to the y‐component of magnetiza-
tion, as a function of sample position.

[15] Small errors in orienting and positioning the
response‐calibration sample can adversely affect
the repeatability and accuracy of the determination.
Ideally the response function should be character-
ized by fitting physically constrained functions (e.g.,
harmonic splines satisfying Laplace’s equation
[Parker and Gee, 2002]) to a set of detailed but
necessarily inexact measurements. We have settled
for an intermediate expedient, fitting by the same
sort of SVD and RLS methods that we use for
deconvolution.

[16] Equation 1 applies equally well to (a) the
conventional measurement and deconvolution
problem, in which we know R and measure D to
determine M, and (b) the calibration problem, in
which we know M and measure D to determine R.
In the latter case, additional columns can be added
to M to specify magnetizations in differing con-
trolled orientations, and the corresponding mea-
surements can be entered in additional columns
of D. Calculating R by least squares is then
rather similar to calculating a conventional single‐
specimen magnetic anisotropy tensor. Including
data from a significant number of scans helps to
average out noise and positioning errors.

[17] We have computed the response function from
six scans (32‐cm length, 1‐mm spacing) of a
homogeneous specimen with dimensions of 18 ×
18 × 15 mm3 (i.e., the same cross‐sectional
dimensions as a u channel), with differing magne-
tization directions (Figure 1a). The calculated
response function (Figure 1b) shows substantial
similarities to those obtained for liquid‐reservoir
instruments [e.g., Oda and Shibuya, 1996; Guyodo
et al., 2002; Parker and Gee, 2002]. The axial
response RZZ(z′) (i.e., the z‐sensor response to the z
component of magnetization, as a function of
measurement position z′) features twin peaks,
corresponding to the individual axial coils, with a
separation of 24 mm. The transverse response
elements RXX(z′) and RYY(z′) are single‐peaked,
with a width at half‐maximum (∼77 mm) compa-
rable to that of RZZ(z′) and slightly wider than the

length of the saddle coils (69 and 68 mm respec-
tively). The transverse response curves differ sig-
nificantly for the liquid‐free instrument, however,
in their asymmetry: negative lobes occur only on
one side, as a result of the changed arrangement of
superconducting shields in the “dry” instrument.
As in previous studies, the largest cross terms are
z‐x and x‐z, with odd symmetry and peaks near the
ends of the saddle coils. Like Parker and Gee
[2002] we also find non‐negligible x‐y terms
with even symmetry and y‐z terms with approxi-
mate odd symmetry. These cross terms can arise
when core samples have asymmetrically shaped
cross‐sections (e.g., split cylindrical cores with
semicircular section), or for symmetrically shaped
cores (e.g., u channels with square or rectangular
section) when the geometric axis of the u channel
does not exactly coincide with that of the sensing
coils [Shibuya and Michikawa, 2000; Parker and
Gee, 2002].

3.2. Noise Characterization
[18] We wish to find the smoothest possible model
that can reproduce the measured data to within their
statistical uncertainty, and therefore we begin by
considering the sources of error and their potential
magnitudes. Quantification of the uncertainty in
each measurement can be accomplished directly by
repeating each scan multiple times, but because of
the time required this is rarely done, and errors are
assumed to be dominated by random noise (normal
distribution with zero mean and variance s2, and
independent of position, i.e., serially uncorrelated).
Measurement positions are assumed to be known
exactly, but inaccuracies at some level are
inevitable and can add to the “noise” when signal
strength changes as a function of position. Oda and
Shibuya [1996] evaluated the possible importance
of positioning errors in a data set by comparing the
fitting errors for successive scans (after different
alternating‐field (AF) demagnetization levels), and
concluded that they were negligible. However,
Guyodo et al. [2002], by combining multiple rep-
licate scans in differing orientations, concluded that
positioning errors of up to a few mm can occur due
stick‐slip behavior of the u channel transport belt
on the track and elasticity of the Kevlar string
connecting the belt to the stepper motor. They
stated that in regions of high gradients in measured
magnetizations, these positioning errors are equiv-
alent to measurement errors of a few percent. For
strongly magnetic u channels, this may be the
dominant source of error, especially near the ends
and other regions of strong signal gradient. In
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addition to the random errors related to individual‐
position imprecision, systematic positioning errors
can also be introduced by inexact placement of
the u channel sample onto the track. Other sig-
nificant error sources include those that directly
affect the measurements (primarily instrument

noise and uncompensated drift) and those that
affect the deconvolution calculations (e.g., errors
in the response function, or lateral heterogeneity
of the magnetization (variation in the x‐y plane))
[Oda and Shibuya, 1996].

Figure 1. (a) Response function calibration data for the “helium‐free” magnetometer: red, green and blue curves
respectively show the X, Y and Z magnetometer responses to magnetic moments oriented in the x (red squares),
y (green circles) and z (blue triangles) directions. Solid and open symbols refer to positive and negative moments,
respectively. (b) Response function of the “helium‐free” magnetometer calculated from the data in Figure 1a.
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[19] Instrument noise, involving a spectrum of
periodicities, will clearly vary from instrument to
instrument, as well as from day to day or from hour
to hour on the same instrument. For this reason
Constable and Parker [1991] quantified noise
using measurements at the beginning and end of a
scan, with the core outside the sensing region.
Examples of “good day” instrumental noise mea-
sured on the IRM’s 2G Long Core magnetometer
are shown in Figures 2a–2d; short periods (<45 s)
are typically dominated by white noise with
amplitudes less than a few times 10−12 Am2, while
longer periods display the characteristic 1/f noise
common to most DC SQUID systems [e.g., Clarke,
1993]. The instrument commonly enters a state of
increased noise and drift (Figures 2e and 2f), pre-
sumably related to trapped flux somewhere in the

SQUID system, following measurement of rela-
tively strong (>10−5Am2) signals; both short‐ and
long‐ period variations are one or two orders of
magnitude greater than in the quiescent state. When
such a noisy state is recognized, it can typically be
remedied by warming the SQUIDs or the stripline
to release the trapped flux. However, if the instru-
ment enters a high‐noise state during a long auto-
mated sequence of demagnetization steps, numerous
noisy scans may result.

[20] Longer‐period (>1 min) variations are gener-
ally larger in amplitude than those with shorter
periods (Figures 2 and 3), and are potentially more
problematic because they may not average to zero
over significant areas of a u channel scan. Varia-
tions with very long periods, much greater than
the time scales associated with measuring a core
(tscan ∼ 10–15 min), can be removed from a scan
with sufficient accuracy by linear drift correction,

Figure 2. Examples of single‐axis SQUID noise
measured on the IRM’s 2G Long Core magnetometer.
(a and b) X SQUID and (c and d) Z SQUID measured
during a period of instrumental quiescence. (e and f) Y
SQUID measured with instrument in non‐ideal state.
Red curve is long‐wavelength signal (periods >10–
15 min) associated with timescales longer than that
required to measure a complete core. This signal has
been removed from Figures 2b, 2d, and 2f. Note that y
axis scales vary over 2 orders of magnitude between
plots.

Figure 3. Power spectral density estimates of SQUID
noise measured (a) during an instrumental quiescent
period and (b) during a non‐ideal state. Note that on
timescales relevant to core measurement (>∼30 s), the
noise spectrum is dominated by 1/f noise.
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but intermediate‐period drift produces serially
correlated errors that can be difficult or impossible
to distinguish from meaningful data variations,
unless replicate scans are measured. After high‐
pass filtering of a noise‐measurement set to remove
the long‐period drift (red line in Figures 2a, 2c,
and 2e), remaining variations with amplitudes of
1–2 × 10−11 Am2 are not uncommon in instrumental
quiescent mode (Figures 2b and 2d), and they are at
least order of magnitude larger in non‐ideal states
(Figure 2f). This type of intermediate‐period back-
ground variation might be termed instrumental drift,
but it is typically nonlinear, unpredictable, and
impossible to correct. If we define “time‐integrated
drift” as the difference between the background
measurement before and after the sample scan, one
approach is to discard measurement scans where
the time‐integrated drift is >1–3% of the minimum
sample signal strength. However, because of the
often oscillatory nature of the noise (e.g., Figure 2b
from 320 to 380 min), this precaution may not
prevent considerable intermediate‐period noise from
passing undetected into the data.

[21] In general, maintaining a sufficiently high
signal/noise ratio is most difficult for very weakly
magnetic samples or for core samples that have
large variations in magnetic intensity. For very
weak cores, the major limitation is the instrumental
background noise as discussed above. Strongly
magnetic samples (or portions of core samples)
tend to increase long‐period noise (e.g., Figures 2e,
2f, and 3b) which may not be a problem for the
highly magnetic sections themselves, but could
create issues for weaker core sections which cannot
be measured separately. The measurement of very
strong cores (>a few times 10−5 Am2) may lead to
multiple flux jumps or extreme noise on the order of
the measured moment (e.g., Figure 3b, Z SQUID).
These cores can be virtually impossible to measure,
let alone deconvolve.

4. Synthetic and Natural Samples
and Experiments

[22] For experiments with controlled magnetization
distributions we manufactured an artificial sample
set by filling a standard u channel (18 mm × 18 mm
interior dimensions), approximately 28 cm long,
with hydraulic cement and letting it harden. The
hardened cement is very homogeneous and con-
tains fine‐grained ferrimagnetic oxides in sufficient
quantity to acquire strong, stable and spatially

uniform anhysteretic remanence (ARM), with
intensities of ∼1 A/m produced by a DC field of
50 mT and an AC field of 100 mT. Its properties
are quite similar to those of the Pozzolana cement
described by Sagnotti et al. [2003]. After curing,
we removed the solid block from the u channel
and sliced it into segments of approximately 2 cm
length, using a water‐cooled diamond‐blade saw.
These blocks can be magnetized anhysteretically
in an offline AF instrument in any desired orien-
tation and in DC and AC fields selected to control
the intensity of ARM acquired. The segments can
be measured individually as discrete specimens
and then replaced in the u channel for measure-
ment as a continuous core sample with known
magnetization distribution, similar to the “train of
cubes” experiment [Weeks et al., 1993; Roberts,
2006]. The reassembled sample length is 27.3 cm,
as some material was removed by sawing.

[23] Three initial experiments involved ARMs with
uniform intensities and varying degrees of direc-
tional variation. In experiment 1, small directional
variations were produced by roughly aligning the
segment z axes with the AF axis, and introducing
random deliberate misalignments of up to ∼30°.
Experiment 2 magnetizations were imprinted
roughly along the specimen y axes, again with
random small misorientations, and with one seg-
ment rotated by approximately 90°, magnetized
roughly along the z axis, to simulate a short field
excursion record, not unlike those in the work by
Guyodo et al. [2002]. In experiment 3 the ARMs
were primarily in the x direction, with two short
“excursions” (single segments magnetized in the y
and z directions) and one short reversed interval
(a single segment magnetized in the ‐x direction),
as in the experiment of Weeks et al. [1993]. In each
of these experiments the reassembled u channel
was measured three times, to enable quantification
of measurement variability.

[24] A separate experiment was carried out to
evaluate the accuracy of the deconvolution
approaches for magnetizations varying in intensity
downcore, with little directional change. This used
a natural lake sediment core from Deming Lake,
Minnesota. The 98‐cm core section, STD2‐
DEM07‐5A‐4B‐1 (referred to as 4B hereafter), is
composed of sandy‐silty clay with up to 40%
organic matter. Section 4B was chosen for the
experiment based on the variability of its magnetic
susceptibility record, measured at the National
Lacustrine Core Repository (LacCore) using core
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logger sensors. The section was subsampled at
2 cm intervals after completion of u channel IRM
acquisition experiments.

5. Results

5.1. Synthetic Sample
[25] In each of the cement u channel experiments,
the three replicate runs show very high signal/noise
ratios and quite good repeatability (Figures 4a, 5a,
and 6a). Standard deviations (Figures 4b, 5b, and 6b)
are typically less than 0.5% of the mean values, but
nevertheless are quite high (a few times 10−8 Am2)
compared to random high‐frequency noise (typi-
cally of order 10−12 to 10−11 Am2, section 3 above).
The measurement errors are clearly not indepen-
dent of position: sharp peaks in the standard devi-

ation generally occur at points of maximum slope
in the measured ~D(z) curves (compare Figures 4b,
4c, 5b, 5c, 6b, and 6c), showing that the variability
between replicate measurements is primarily due to
small positioning errors rather than to SQUID noise
or drift. Because a positioning error Dz directly
affects the measurements according to D~D =
(d~D/dz)Dz, we plot the standard deviations of the
replicate measurements against data gradients in
Figures 4d, 5d, and 6d, showing very strong cor-
relation in experiment 2 (Figure 5), moderate cor-
relation in experiment 3 (Figure 6), and rather weak
correlation in experiment 1 (Figure 4). In the
experiment 2 results (Figure 5d), the slopes for the
x, y and z components all correspond to a position‐
error standard deviation of 0.20 mm, and the
intercepts correspond to instrument noise of 6 ×
10−10 (z) to 1.4 × 10−9 (x) Am2. An appropriate

Figure 4. (a) Measured data for experiment 1; red, green and blue respectively correspond to x y and z components.
Three independent scans show excellent reproducibility ‐ differences between scans are indistinguishable in the plot.
(b) Standard deviation of measured x, y and z components. (c) Downcore gradients of the measured x, y and z com-
ponents. (d) Correlation of standard deviations and gradients of measured data.
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description of measurement errors in this data set is
therefore

~�DðzÞ ¼ ~�0 þ �zd~D=dz; ð5Þ

with ~�0 comprising noise on all time scales short
enough to persist in the data set after linear drift
correction, and the positional standard deviation sz
equal to 0.02 cm. In experiment 1, even though the
reproducibility of the measurements appears to be
nearly perfect (Figure 4a), and both the data and the
gradients smoothly approach zero in the “leader”
and “trailer,” there is significant variance in this
data set that is not explained either by positioning
errors or by short‐period noise, and we attribute it
to intermediate‐period drift, for which no simple
sD(z) description can be specified. The experiment
3 results show a combination of short‐period noise,

intermediate‐period drift and positioning errors.
Slopes for the x, y and z components correspond to
a position‐error standard deviation of 0.10 mm in
each case, and the intercepts correspond to instru-
ment noise of 4 × 10−10 (z) to 3 × 10−9 (x) Am2.

[26] The discontinuous changes in magnetization
intensity at the u channel ends, and the sharp
directional changes in experiments 2 and 3
(Figures 8–10), are strongly smoothed in the
continuously measured data sets, as expected
(Figures 4a, 5a, and 6a). The 90‐degree directional
change in experiment 2 at z ∼ 21 cm is shown by a
small peak in Mx at that location and a decrease in
My that persists through the rest of the core due to
the convolved effects of the directional change and
the core end. The rapid sequence of directional
changes in experiment 3 between 7 and 15 cm

Figure 5. (a) Measured data for experiment 2; red, green and blue respectively correspond to x y and z components.
Three independent scans show excellent reproducibility. (b) Standard deviation of measured x, y and z components.
(c) Downcore gradients of the measured x, y and z components. (d) Correlation of standard deviations and gradients
of measured data.
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results in a single smooth minimum in Mx at
around 10 cm.

[27] The optimal damping level for of the inverse
calculations is in all cases quite well defined by a
sharp break in slope on the tradeoff curve (Figure 7).
Deconvolution using the assumption of position‐
independent measurement errors produces remark-
ably good estimates of the true magnetization
distribution in each of the experiments, using all
three methods (Figures 8–10). The full amplitude
of the directional‐component variations is accu-
rately reconstructed, with relatively little spurious
oscillation. The specious variations that do occur
are primarily within a few centimeters of the
core ends or other abrupt changes in directional‐
component intensity, and they are slightly larger for
the ABIC‐minimized models than for the SVD and

RLS models, perhaps because we use the full
response tensor for the latter two. Changing the
estimated measurement error sD does not affect
the deconvolved magnetization models. However,
the estimated parameter uncertainties sM do scale
in proportion to sD [see, e.g., Oda and Shibuya,
1996, equation 18].

[28] These experiments provide a best‐case sce-
nario for the inverse calculations because of the
high signal/noise ratio (mostly >1000) and the
relatively dense sampling (5‐mm steps). It is of
interest to simulate less favorable situations, by
adding random noise to the data (as in the work by
Oda and Shibuya [1996]) and by using subsets of
the data resampled at lower resolution. When we
reduce signal/noise ratios by adding Gaussian‐
distributed random deviates to the measured data of

Figure 6. (a) Measured data for experiment 3; red, green and blue respectively correspond to x y and z components.
Three independent scans show excellent reproducibility. (b) Standard deviation of measured x, y and z components.
(c) Downcore gradients of the measured x, y and z components. (d) Correlation of standard deviations and gradients
of measured data.
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experiment 3, the different optimization techniques
all respond in essentially the same way, increasing
the model smoothness and reducing resolution and
accuracy accordingly. Synthetic noise with a stan-
dard deviation of 5 × 10−8 Am2 (signal/noise ∼
500) results in models (Figures 11a and 11b) in

which the directional‐component variations are still
accurately located but their full amplitude is not
recovered; spurious variations are confined to the
same small amplitudes observed in the clean‐data
inversions. A further tenfold increase in noise
levels (signal/noise ∼ 50) seriously degrades the

Figure 7. (a) Effect of different zeroing thresholds for SVD, for the data of experiment 2. The ratio wmin/wmax ∼
1e‐5, so thresholds below this yield models identical to the simple least squares solution. Higher zeroing thresholds
first decrease the model size (∼50% reduction in RMS moment) with minimal increase in misfit; thresholds above
1e‐2 significantly degrade the fit. (b) The optimal model is determined by the location of the “knee” in the tradeoff
curve.
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resolution and accuracy of the models (Figures 11c
and 11d): the directional‐component variations are
reduced to about half their true values, and the
double minimum in the x component near 10 cm is
no longer resolved into separate features. Calcu-
lated confidence intervals (not shown) are large
enough to include the variability in the set of
models, but often exclude the true directional‐
component magnetizations.

[29] The directional‐component variations in these
experiments have a characteristic length scale of
two centimeters. Not surprisingly, some “over-
sampling” is necessary to obtain good resolution of

the rapidly varying magnetization directions in
experiment 3. Measurements in steps of 1 cm still
yield excellent resolution (Figure 12a), but another
twofold increase in step size results in signifi-
cant loss of detail in the magnetization models
(Figure 12b). Because of the explicit second‐
difference minimization in the ABIC approach, we
expected the down‐up‐down‐up sequence in Mx to
be suppressed more than it is for the SVD and RLS
models, but in fact there is no real difference: in all
cases the amplitudes of the directional‐component
variations are reduced significantly from their true
values. Despite the high signal/noise ratio, the

Figure 8. The u channel magnetization distribution for experiment 1. Diamonds show measured values for discrete
segments; curves show x, y and z components of magnetization models obtained by deconvolution of continuous‐
channel measurements, using SVD, RLS and ABIC minimization as indicated.

Figure 9. The u channel magnetization distribution for experiment 2. Diamonds show measured values for discrete
segments; curves show x, y and z components of magnetization models obtained by deconvolution of continuous‐
channel measurements, using SVD, RLS and ABIC minimization as indicated.
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solutions for this critical sampling density (mea-
surement interval = length scale of magnetic
variations) quite strongly resemble those obtained
from the oversampled data set with s/n reduced to
50 by the addition of synthetic noise (compare
Figures 12b, 11c, and 11d).

[30] When we attempt to account for position‐
dependent measurement errors in a more accurate
way, i.e., by using equation (5) in equations (2b)
and (2c), the results are rather surprising. First for
comparison we show in Figure 13a the best fit
model obtained by SVD with a fixed (position‐
independent) measurement‐error probability distri-
bution, with zero mean and sD = 1 × 10−8 Am2 for
x, y and z. The best fit model is independent of the
specified error variance when sD does not vary
with depth; a fixed sD affects only the estimated
parameter uncertainties. Therefore we first find the
best model, calculate its RMS residual, and then
use that as an estimate of sD to obtain the confidence
intervals (as done by Oda and Shibuya [1996]).
Both the model and the error bars are very similar
to those calculated by the ABIC code (not shown).
Residuals (Figure 13b) exhibit no systematic varia-
tion with depth in the constant‐sD case. In contrast,
the same data set deconvolved by SVDwith a depth‐

dependent measurement error model (equation (5),
with the x, y and z components of ~�0 each equal to
2 × 10−10 Am2, and sz = 0.02 cm) yields a calcu-
lated magnetization distribution (Figure 13c) that
differs in some significant ways from the con-
stant‐sD model. In particular, the x and z compo-
nents of the deconvolved magnetization show
significantly sharper (higher frequency and ampli-
tude) variations for z < 5 cm, and the y component
has more variability over the entire length. The
95% confidence intervals reflect the increased
measurement uncertainties, and include almost all of
the magnetization values determined by discrete‐
specimen measurements. The residuals for this
inversion (Figure 13d) show exactly the expected
downcore variation, in accord with the specified
measurement uncertainties, with relaxed fitting
tolerance in areas of high signal gradient. What is
surprising is that in the area where the fitting
tolerance is most relaxed (z < 5 cm), the model
contains the largest and most erratic variations.

5.2. Lake Sediment Sample
[31] The pulsed‐field IRM has minimal directional
variation (measured vectors for the continuous u

Figure 10. The u channel magnetization distribution for experiment 3. Diamonds show measured values for discrete
segments; curves show x, y and z components of magnetization models obtained by deconvolution of continuous‐
channel measurements, using SVD, RLS and ABIC minimization as indicated.
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channel are almost all within 2° of the z axis) but
large variations in intensity (Figure 14). The small
transverse (x and y) components of the measured
vectors may be due to anisotropic acquisition of
IRM or to the effects of tensor convolution.
Deconvolution brings out intensity variations with
larger amplitudes and finer length scales (Figure 14,
z component), and also accentuates the directional
variability: model transverse magnetic components
(Figure 14, x and y components) commonly exceed
10% of the axial component (i.e., directions deviate
by >5° from the z axis). Measurements on discrete
cubes cut contiguously from the u channel show
z‐component variations in quite good agreement
with those computed by deconvolution of the
continuous‐core measurements (Figure 14). There is
little or no systematic difference between the results
of ABIC minimization, SVD and RLS inversion.

[32] The x‐ and y‐component variations measured
on the discrete samples are comparable in magni-
tude to those measured in the continuous scan, but
differ in the details of their downcore distribution.
The discrete‐sample transverse‐component variations
are much smaller than those obtained by deconvolu-
tion of the continuous‐core scan (Figure 14). The
deconvolved transverse‐component variations are
similar for all models, despite the significant dif-
ference between the response‐function cross terms
in the ABIC code and the two alternatives (the
ABIC‐minimization program does not include z‐y,
y‐z, x‐y or y‐x terms but uses the same x‐z and z‐x
terms as our full‐tensor response function). The
spurious x‐component variations are driven in the
same way for all the inversions by the strong var-
iations in Mz, whereas y‐component variations are
in two cases (RLS and SVD) due to imperfect

Figure 11. Artificial noise test. Red, green and blue respectively correspond to x, y and z components of magneti-
zation. Five simulated data sets generated by adding Gaussian noise (standard deviation of 5 × 10−8 Am2) to measured
data before deconvolution with (a) ABIC minimization and (b) optimized RLS. Five simulated data sets generated by
adding Gaussian noise (standard deviation of 5 × 10−7 Am2) to measured data before deconvolution with (c) ABIC
minimization and (d) optimized RLS. Discrete‐sample measurements shown by squares for comparison.
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calibration of RYZ and in the remaining case
(ABIC) due to entire omission of RYZ.

6. Discussion

[33] Our major goal in this study has been to
evaluate by direct experimentation the effects of
varying several important aspects of the current
state‐of‐the‐art approach to deconvolution of con-
tinuous‐core paleomagnetic data. In particular, we
were interested in alternatives to explicit second‐
difference penalties, in the consequences of non-
uniforn measurement‐error variance downcore, in
the effects of over/undersampling, and in how these
factors may interact.

[34] Second‐difference minimization, as stated
above, is a very logical approach to constrained
inversion, because second differences represent
linear combinations of model parameters that are
poorly constrained by the data. Nevertheless, it is
conceivable that in some circumstances alterna-
tive constraints might produce better models. Our
experiments involving downcore directional changes

with essentially invariant intensity were designed
to explore this. Accurate ~M (z) models are required
to have almost exactly the same total size (L2
norm) in all three of these experiments, but signifi-
cantly different summed squared second differ-
ences, increasing as the number and magnitude of
directional shifts increases. For experiments 2 and
especially 3, accurate models are required to have
large second differences, particularly when the
sampling interval and spacing of model elements
approach the length scale of real magnetic varia-
tions. For the lake sediment IRM, penalizing total
model size might be expected to suppress down‐
core intensity variations in the optimized SVD and
RLS models. In view of these considerations it
seemed plausible that algorithms with different pen-
alty functions (second differences and total model
size) would produce different optimized models
over the series of experiments. It is interesting that
this turned out not to be the case: the three tech-
niques in each of our experiments converge to
essentially the same solutions. On the one hand
this is not too surprising, since the techniques all
solve essentially the same matrix equation (same

Figure 12. Sampling density test. Data set of experiment 3 (measuredwith 5‐mmspacing) was resampled at (a) 10‐mm
spacing and (b) 20‐mm spacing, and deconvolved using SVD, RLS and ABIC minimization. Discrete‐sample mea-
surements shown by diamonds for comparison. Red, green and blue respectively correspond to x, y and z components
of magnetization.
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response function and same data set), and it is only
the stabilizing mechanisms and evaluation criteria
that differ. Moreover in SVD the functions elimi-
nated from the basis set by zeroing small singular
values are generally those with large second dif-
ferences, so even though the zeroing criteria are
based on total model size and residual, the effect is
understandably quite similar to that of explicit
second‐difference minimization. Nevertheless it is
significant that the three algorithms always con-
verge so closely in the relatively large space of
potentially acceptable solution vectors, given the
large changes in the relative magnitudes of the
different penalty functions over the set of experi-
ments. In practice this result provides assurance
that the solutions obtained by any one of these
approaches are indeed optimal.

[35] When measurement errors are assumed to be
normally distributed with position‐independent
variance, as assumed in the ABIC code, the mea-
sured data are all given equal weight in calculating an
optimally fit magnetization model. This assumption
is not generally warranted, but our results show that
even when it is grossly in error, it still appears to be
useful, improving the stability and accuracy of the
inverse modeling. When we incorporate a more
realistic model of data errors with depth‐dependent
variance, measurements from high‐gradient sections
of a core are given much less weight, due to the
direct translation of small position uncertainties into
relatively large magnetic measurement uncertainties.
Despite our hope that properly accounting for
this error distribution in the inverse calculations
would improve the outcome, the reverse is true.

Figure 13. Effect of position‐dependent measurement errors. Red, green and blue correspond to x, y and z vector
components. (a) Model with position‐independent sD = 1 × 10−8 Am2, with 95% confidence intervals and discrete‐
sample measurements shown by squares for comparison. (b) Residuals of the model in Figure 13a; black shows
total vector length (Dx

2 + Dy
2 + Dz

2)1/2. RMS misfit is 1.3 × 10−8 Am2. (c) Model with position‐dependent sD = 2 ×
10−10 Am2 + dD/dz*0.02cm, with 95% confidence intervals and discrete‐sample measurements shown by squares
for comparison. (d) Residuals of the model in Figure 13c; black shows total vector length. RMSmisfit is 7.0 × 10−8 Am2.
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Discounting the measurements in high‐gradient
regions reduces stability and accuracy because
these are the measurements that most directly
indicate significant downcore changes in magneti-
zation. Improvement in the accuracy of sample
positioning would be extremely beneficial but in
practice is very difficult to achieve. We tested
a commercial laser‐positioning system (Acuity
AR1000) mounted in line with the u channel track,
but found that its accuracy and reproducibility
(a few hundred microns) were not adequate to
resolve the variability in positions set by stepper‐
motor counts. Replacement of the stepper motor by
a servo motor and controller in the Bremen lab
instrument resulted in significant improvement
(K. Fabian, personal communication, 2009). How-
ever, even if positioning errors can be reduced to a
standard deviation of tens of microns, they will still
often produce measurement errors that are large
compared to high‐frequency instrument noise,
and the effective signal/noise ratio of the system
will be self‐limiting near u channel ends and near

sharp internal changes in magnetization orientation/
intensity.

[36] An ultimate limitation on resolution of down‐
core magnetization changes is the width of the
instrument response function. Oda and Shibuya
[1996] found that for the magnetometer then on
the Joides Resolution, with a response‐function
width (at half height) of ∼11cm, they could
accurately deconvolve to a resolution of ∼2 cm in
favorable cases. For 2G systems with “high‐
resolution” coil geometry, the response function
width is about 5 cm [Guyodo et al., 2002], and
proportional resolution would be ∼1 cm, assuming
high s/n ratios and low damping parameters (u, z
or a). Guyodo et al. [2002] tested this by sub-
sampling two u channels in contiguous 1‐cm
lengths, and found that the discrete‐sample mea-
surements exhibited much stronger variations in
direction and intensity than were seen in the
deconvolved whole‐core data. They suggested that
the differences could be attributed either to inac-
curacies in the deconvolution calculations (due for

Figure 14. Pulsed‐field (along z axis) IRM of the Deming Lake sediment u channel. Bold curves show continuous‐
scan measured moments normalized by effective volume (u channel cross‐sectional area times effective sensed length
[e.g., Roberts, 2006]). Finer curves show magnetization models obtained by deconvolution of the continuous mea-
surements using SVD, RLS, and ABIC‐minimization. Measurements on discrete cubes after subsampling (diamonds)
generally agree well with the deconvolved models.
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example to omission of some cross terms from the
response function) or to real differences in the
magnetization of the subsamples (due for example
to sediment disturbance or positioning errors dur-
ing cutting). To this list we would add the fact that
a narrower response function necessarily produces
stronger signal gradients at the core ends and near
locations within the core where magnetization
intensity or direction change sharply, and therefore
positioning errors are translated into larger errors in
the measured signal. In this way, somewhat para-
doxically, the narrower response function may
hinder resolution in some ways while helping in
others.

[37] Oda and Shibuya [1996] evaluated the
importance of the response‐function cross terms by
deconvolving a data set using different response
functions that included or omitted cross terms, and
concluded that the differences were generally not
of major significance. Our results for the sediment
core with an axial IRM confirm this. Erroneously
large transverse components in the deconvolved
model magnetizations must result from imperfect
calibration of the response‐function cross terms
RXZ and RYZ. Omission of the latter term in the
ABIC‐minimization code results in erroneous y
components comparable to those calculated by
RLS and SVD using the full response tensor. In
principle these should be correctable by using a
more accurate response function. In practice how-
ever it would appear that other sources of error
generally are more important, as concluded by Oda
and Shibuya [1996]. It is also interesting to note
that the optimal damping level differs for the three
directional‐component magnetizations according to
their relative intensities: the x‐ and y‐component
models are clearly underdamped, given the lower
signal/noise ratios in the x‐ and y‐component data.
For this reason, separate inversions for the indi-
vidual directional components (as in the work by
Constable and Parker [1991]) may in some cases
be preferable to simultaneous solution for the three
vector components of ~M (z) using the tensor
response and full data vectors.

7. Summary and Conclusions

[38] In previous approaches to deconvolution of
continuous‐core paleomagneic data, high‐
frequency noise has been assumed to be the dom-
inant source of measurement error. In other words,
it is assumed that random signal fluctuations occur
primarily on timescales sufficiently short that the
measurement‐error probability distribution for each

position in a scan is unrelated to the error in neigh-
boring positions. Our results, based on extended
noise measurements and on replicate scans of
several u channels, show that this assumption is
commonly unwarranted. The noise spectrum
includes significant power in periodicities compa-
rable to the time required to scan a core (∼5 to
30 min); these variations are not removed by linear
drift correction, nor do the errors average to zero
over substantial core intervals. Such errors can only
be detected and characterized by performing rep-
licate scans (as in, e.g., the work by Guyodo et al.
[2002]). Moreover irreproducibility and inaccuracy
in sample positioning are major sources of mea-
surement error, especially in portions of a core
where there are large gradients in the measured
signal. Somewhat paradoxically, when we incor-
porate a more accurate model of measurement
errors into the inverse calculations, the decon-
volved magnetization distributions are less accurate
and have more spurious variation. Discounting the
measurements in high‐gradient regions reduces
stability and accuracy because these are the mea-
surements that most directly reflect significant
changes in core magnetization.

[39] In general, the different optimization techni-
ques that we have evaluated (RLS, SVD and
ABIC) all produce dramatically improved estimates
of the true magnetization distribution when (a) the
signal/noise ratio exceeds a few hundred, (b) the
sampling interval is no more than half the length‐
scale of magnetization changes downcore, and
(c) the response function is accurately specified.
Moreover for all three methods, the magnetization
models are degraded in the same way, and at the
same rate, when any of these three conditions is not
fully realized. Future improvements will require
more effective ways to deal with positioning errors,
both in terms of statistical methods for addressing
the resulting measurement uncertainties, and in
terms of technical improvements in setting and
measuring positions accurately.
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