188 research outputs found

    Nano ES GEMMA and PDMA, New Tools for the Analysis of Nanobioparticles—Protein Complexes, Lipoparticles, and Viruses

    Get PDF
    Differential mobility analysis (DMA) is a technique suited for size analysis as well as preparative collection of airborne nanosized airborne particles. In the recent decade, the analysis of intact viruses, proteins, DNA fragments, polymers, and inorganic nanoparticles was possible when combining this method with a nano-electrospray charge-reduction source for producing aerosols from a sample solution/suspensions. Mass analysis of high molecular weight noncovalent complexes is also possible with this methodology due to the linear correlation of the electrophoretic mobility diameter and the molecular mass. In this work, we present the analysis (size and molecular mass) of high molecular weight multimers (noncovalent functional homocomplex) of Jack bean urease in a mass range from 275 kDa up to 2.5 MDa, with mainly present tri- and hexamers but also higher oligomers of the 91 kDa monomer subunit. In a second experiment, the size analysis of intact very-low-density (∌35 nm), low-density (∌22 nm) and high-density lipoparticles (∌10 nm), which are heterocomplexes consisting of cholesterol, lipids, and proteins in different ratios, is presented. Results from mobility analysis were in excellent agreement with particle diameters found in literature. The last presented experiment demonstrates size analysis of a rod-like virus and selective sampling of a selected size fraction of electrosprayed, singly-charged tobacco mosaic virus particles. Sampling and subsequent transmission electron microscopic investigations of a specific size fraction (40 nm electrophoretic mobility diameter) revealed the folding of virus particles during the electrospray and charge reduction (electrical stress) as well as solvent evaporation (mechanical stress) process, leading to an observed geometry of 150 (length) × 35 (width) nm (average cylindrical geometry of unsprayed intact virus 300 × 18 nm)

    GiSAO.db: a database for ageing research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related gene expression patterns of <it>Homo sapiens </it>as well as of model organisms such as <it>Mus musculus</it>, <it>Saccharomyces cerevisiae</it>, <it>Caenorhabditis elegans </it>and <it>Drosophila melanogaster </it>are a basis for understanding the genetic mechanisms of ageing. For an effective analysis and interpretation of expression profiles it is necessary to store and manage huge amounts of data in an organized way, so that these data can be accessed and processed easily.</p> <p>Description</p> <p>GiSAO.db (Genes involved in senescence, apoptosis and oxidative stress database) is a web-based database system for storing and retrieving ageing-related experimental data. Expression data of genes and miRNAs, annotation data like gene identifiers and GO terms, orthologs data and data of follow-up experiments are stored in the database. A user-friendly web application provides access to the stored data. KEGG pathways were incorporated and links to external databases augment the information in GiSAO.db. Search functions facilitate retrieval of data which can also be exported for further processing.</p> <p>Conclusions</p> <p>We have developed a centralized database that is very well suited for the management of data for ageing research. The database can be accessed at <url>https://gisao.genome.tugraz.at</url> and all the stored data can be viewed with a guest account.</p

    miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging

    Get PDF
    Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non-coding miRNAs are potent post-transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age-related and senescence-related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8+ T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8+ T cell populations from old and young donors. Using locked nucleic acid-based miRNA microarrays, we identified four commonly regulated miRNAs, miR-17 down-regulated in all seven; miR-19b and miR-20a, down-regulated in six models; and miR-106a down-regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans

    DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction

    Get PDF
    In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.We wish to thank Molly Burhans for preparing plasmid DNA and Figure 5. This research was supported by a National Cancer Institute Support Grant (P30CA016056) to Roswell Park Cancer Institute and by FCT - Fundacao para a Ciencia e Tecnologia (PTDC/BIA-MIC/114116/2009), Portugal. B. S. M. received a fellowship from FCT (SRFH/BD/41674/2007)
    • 

    corecore