946 research outputs found

    Evaluating Alternative Methods of Forecasting House Prices: A Post-Crisis Reassessment

    Get PDF
    This paper compares the performance of different forecasting models of California house prices. Multivariate, theory-driven models are able to outperform a theoretical time series models across a battery of forecast comparison measures. Error correction models were best able to predict the turning point in the housing market, whereas univariate models were not. Similarly, even after the turning point occurred, error correction models were still able to outperform univariate models based on MSFE, bias, and forecast encompassing statistics and tests. These results highlight the importance of incorporating theoretical economic relationships into empirical forecasting models.house prices, forecasting, forecast comparison, forecast encompassing

    Old Myths and New Realities

    Get PDF

    Plant population and row spacing influence maximum corn yield

    Get PDF
    ... contribution of the North Central Watershed Research Center, Corn Belt Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture ...--P. [3].Digitized 2007 AES MoU.Includes bibliographical references

    Measuring vaccine confidence: introducing a global vaccine confidence index.

    Get PDF
    BACKGROUND: Public confidence in vaccination is vital to the success of immunisation programmes worldwide. Understanding the dynamics of vaccine confidence is therefore of great importance for global public health. Few published studies permit global comparisons of vaccination sentiments and behaviours against a common metric. This article presents the findings of a multi-country survey of confidence in vaccines and immunisation programmes in Georgia, India, Nigeria, Pakistan, and the United Kingdom (UK) - these being the first results of a larger project to map vaccine confidence globally. METHODS: Data were collected from a sample of the general population and from those with children under 5 years old against a core set of confidence questions. All surveys were conducted in the relevant local-language in Georgia, India, Nigeria, Pakistan, and the UK. We examine confidence in immunisation programmes as compared to confidence in other government health services, the relationships between confidence in the system and levels of vaccine hesitancy, reasons for vaccine hesitancy, ultimate vaccination decisions, and their variation based on country contexts and demographic factors. RESULTS: The numbers of respondents by country were: Georgia (n=1000); India (n=1259); Pakistan (n=2609); UK (n=2055); Nigerian households (n=12554); and Nigerian health providers (n=1272). The UK respondents with children under five years of age were more likely to hesitate to vaccinate, compared to other countries. Confidence in immunisation programmes was more closely associated with confidence in the broader health system in the UK (Spearman's ρ=0.5990), compared to Nigeria (ρ=0.5477), Pakistan (ρ=0.4491), and India (ρ=0.4240), all of which ranked confidence in immunisation programmes higher than confidence in the broader health system. Georgia had the highest rate of vaccine refusals (6 %) among those who reported initial hesitation. In all other countries surveyed most respondents who reported hesitating to vaccinate went on to receive the vaccine except in Kano state, Nigeria, where the percentage of those who ultimately refused vaccination after initially hesitating was as high as 76%) Reported reasons for hesitancy in all countries were classified under the domains of "confidence," "convenience," or "complacency," and confidence issues were found to be the primary driver of hesitancy in all countries surveyed

    Sensitivity curves for spaceborne gravitational wave interferometers

    Get PDF
    To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are corrected, and the first (mostly) analytic calculation of the gravitational wave transfer function is presented. Example sensitivity curve calculations are presented for the proposed LISA interferometer. We find that previous treatments of LISA have underestimated its sensitivity by a factor of 3\sqrt{3}.Comment: 27 pages + 5 figures, REVTeX, accepted for publication in Phys Rev D; Update reflects referees comments, figure 3 clarified, figure 5 corrected for LISA baselin

    A High-Mass Protobinary System in the Hot Core W3(H2O)

    Full text link
    We have observed a high-mass protobinary system in the hot core W3(H2O) with the BIMA Array. Our continuum maps at wavelengths of 1.4mm and 2.8mm both achieve sub-arcsecond angular resolutions and show a double-peaked morphology. The angular separation of the two sources is 1.19" corresponding to 2.43X10^3 AU at the source distance of 2.04 kpc. The flux densities of the two sources at 1.4mm and 2.8mm have a spectral index of 3, translating to an opacity law of kappa ~ nu. The small spectral indices suggest that grain growth has begun in the hot core. We have also observed 5 K components of the CH3CN (12-11) transitions. A radial velocity difference of 2.81 km/s is found towards the two continuum peaks. Interpreting these two sources as binary components in orbit about one another, we find a minimum mass of 22 Msun for the system. Radiative transfer models are constructed to explain both the continuum and methyl cyanide line observations of each source. Power-law distributions of both density and temperature are derived. Density distributions close to the free-fall value, r^-1.5, are found for both components, suggesting continuing accretion. The derived luminosities suggest the two sources have equivalent zero-age main sequence (ZAMS) spectral type B0.5 - B0. The nebular masses derived from the continuum observations are about 5 Msun for source A and 4 Msun for source C. A velocity gradient previously detected may be explained by unresolved binary rotation with a small velocity difference.Comment: 38 pages, 9 figures, accepted by The Astrophysical Journa

    A Formal Ontology of Subcellular Neuroanatomy

    Get PDF
    The complexity of the nervous system requires high-resolution microscopy to resolve the detailed 3D structure of nerve cells and supracellular domains. The analysis of such imaging data to extract cellular surfaces and cell components often requires the combination of expert human knowledge with carefully engineered software tools. In an effort to make better tools to assist humans in this endeavor, create a more accessible and permanent record of their data, and to aid the process of constructing complex and detailed computational models, we have created a core of formalized knowledge about the structure of the nervous system and have integrated that core into several software applications. In this paper, we describe the structure and content of a formal ontology whose scope is the subcellular anatomy of the nervous system (SAO), covering nerve cells, their parts, and interactions between these parts. Many applications of this ontology to image annotation, content-based retrieval of structural data, and integration of shared data across scales and researchers are also described

    Using binary stars to bound the mass of the graviton

    Get PDF
    Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially yield an upper bound on the inverse mass of the graviton as strong as h/mg=λg>1×1015h/m_{g} = \lambda_{g} > 1 \times 10^{15} km (mg<1×10−24m_{g} < 1 \times 10^{-24} eV), more than two orders of magnitude better than present solar system derived bounds.Comment: 21 pages plus 4 figures; ReVTe

    Phonon Lifetime Investigation of Anharmonicity and Thermal Conductivity of UO₂ by Neutron Scattering and Theory

    Get PDF
    Inelastic neutron scattering measurements of individual phonon lifetimes and dispersion at 295 and 1200 K have been used to probe anharmonicity and thermal conductivity in UO2. They show that longitudinal optic phonon modes carry the largest amount of heat, in contrast to past simulations and that the total conductivity demonstrates a quantitative correspondence between microscopic and macroscopic phonon physics. We have further performed first-principles simulations for UO2 showing semiquantitative agreement with phonon lifetimes at 295 K, but larger anharmonicity than measured at 1200 K
    • 

    corecore