To determine whether particular sources of gravitational radiation will be
detectable by a specific gravitational wave detector, it is necessary to know
the sensitivity limits of the instrument. These instrumental sensitivities are
often depicted (after averaging over source position and polarization) by
graphing the minimal values of the gravitational wave amplitude detectable by
the instrument versus the frequency of the gravitational wave. This paper
describes in detail how to compute such a sensitivity curve given a set of
specifications for a spaceborne laser interferometer gravitational wave
observatory. Minor errors in the prior literature are corrected, and the first
(mostly) analytic calculation of the gravitational wave transfer function is
presented. Example sensitivity curve calculations are presented for the
proposed LISA interferometer. We find that previous treatments of LISA have
underestimated its sensitivity by a factor of 3.Comment: 27 pages + 5 figures, REVTeX, accepted for publication in Phys Rev D;
Update reflects referees comments, figure 3 clarified, figure 5 corrected for
LISA baselin