698 research outputs found

    Time-position characterization of conflicts: a case study of collaborative editing

    Get PDF
    International audienceCollaborative editing (CE) became increasingly common, often compulsory in academia and industry where people work in teams and are distributed across space and time. We aim to study collabora-tive editing behavior in terms of collaboration patterns users adopt and in terms of a characterisation of conflicts, i.e. edits from different users that occur close in time and position in the document. The process of a CE can be split into several editing 'sessions' which are performed by a single author ('single-authored session') or several authors ('co-authored session'). This fragmentation process requires a pre-defined 'maximum time gap' between sessions which is not yet well defined in previous studies. In this study, we analysed CE logs of 108 collaboratively edited documents. We show how to establish a suitable 'maximum time gap' to split CE activities into sessions by evaluating the distribution of the time distance between two adjacent sessions. We studied editing activities inside each 'co-author session' in order to define potential conflicts in terms of time and position dimensions before they occur in the document. We also analysed how many of these potential conflicts become real conflicts. Findings show that potential conflicting cases are few. However, they are more likely to become real conflicts

    Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms

    Get PDF
    The gaseous hormone ethylene is one of the master regulators of development and physiology throughout the plant life cycle. Ethylene biosynthesis is stringently regulated to permit maintenance of low levels during most phases of vegetative growth but to allow for rapid peaks of high production at developmental transitions and under stress conditions. In most tissues ethylene is a negative regulator of cell expansion, thus low basal levels of ethylene biosynthesis in dark-grown seedlings are critical for optimal cell expansion during early seedling development. The committed steps in ethylene biosynthesis are performed by the enzymes 1-aminocyclopropane 1-carboxylate synthase (ACS) and 1-aminocyclopropane 1-carboxylate oxidase (ACO). The abundance of different ACS enzymes is tightly regulated both by transcriptional control and by post-translational modifications and proteasome-mediated degradation. Here we show that specific ACS isozymes are targets for regulation by protein phosphatase 2A (PP2A) during Arabidopsis thaliana seedling growth and that reduced PP2A function causes increased ACS activity in the roots curl in 1-N-naphthylphthalamic acid 1 (rcn1) mutant. Genetic analysis reveals that ethylene overproduction in PP2A-deficient plants requires ACS2 and ACS6, genes that encode ACS proteins known to be stabilized by phosphorylation, and proteolytic turnover of the ACS6 protein is retarded when PP2A activity is reduced. We find that PP2A and ACS6 proteins associate in seedlings and that RCN1-containing PP2A complexes specifically dephosphorylate a C-terminal ACS6 phosphopeptide. These results suggest that PP2A-dependent destabilization requires RCN1-dependent dephosphorylation of the ACS6 C-terminus. Surprisingly, rcn1 plants exhibit decreased accumulation of the ACS5 protein, suggesting that a regulatory phosphorylation event leads to ACS5 destabilization. Our data provide new insight into the circuitry that ensures dynamic control of ethylene synthesis during plant development, showing that PP2A mediates a finely tuned regulation of overall ethylene production by differentially affecting the stability of specific classes of ACS enzymes

    Characterization of Bacteria in Biopsies of Colon and Stools by High Throughput Sequencing of the V2 Region of Bacterial 16S rRNA Gene in Human

    Get PDF
    BACKGROUND: The characterization of the human intestinal microflora and their interactions with the host have been identified as key components in the study of intestinal disorders such as inflammatory bowel diseases. High-throughput sequencing has enabled culture-independent studies to deeply analyze bacteria in the gut. It is possible with this technology to systematically analyze links between microbes and the genetic constitution of the host, such as DNA polymorphisms and methylation, and gene expression. METHODS AND FINDINGS: In this study the V2 region of the bacterial 16S ribosomal RNA (rRNA) gene using 454 pyrosequencing from seven anatomic regions of human colon and two types of stool specimens were analyzed. The study examined the number of reads needed to ascertain differences between samples, the effect of DNA extraction procedures and PCR reproducibility, and differences between biopsies and stools in order to design a large scale systematic analysis of gut microbes. It was shown (1) that sequence coverage lower than 1,000 reads influenced quantitative and qualitative differences between samples measured by UniFrac distances. Distances between samples became stable after 1,000 reads. (2) Difference of extracted bacteria was observed between the two DNA extraction methods. In particular, Firmicutes Bacilli were not extracted well by one method. (3) Quantitative and qualitative difference in bacteria from ileum to rectum colon were not observed, but there was a significant positive trend between distances within colon and quantitative differences. Between sample type, biopsies or stools, quantitative and qualitative differences were observed. CONCLUSIONS: Results of human colonic bacteria analyzed using high-throughput sequencing were highly dependent on the experimental design, especially the number of sequence reads, DNA extraction method, and sample type

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients diagnosed with lung adenocarcinoma (AD) and squamous cell carcinoma (SCC), two major histologic subtypes of lung cancer, currently receive similar standard treatments, but resistance to adjuvant chemotherapy is prevalent. Identification of differentially expressed genes marking AD and SCC may prove to be of diagnostic value and help unravel molecular basis of their histogenesis and biologies, and deliver more effective and specific systemic therapy.</p> <p>Methods</p> <p>MiRNA target genes were predicted by union of miRanda, TargetScan, and PicTar, followed by screening for matched gene symbols in NCBI human sequences and Gene Ontology (GO) terms using the PANTHER database that was also used for analyzing the significance of biological processes and pathways within each ontology term. Microarray data were extracted from Gene Expression Omnibus repository, and tumor subtype prediction by gene expression used Prediction Analysis of Microarrays.</p> <p>Results</p> <p>Computationally predicted target genes of three microRNAs, miR-34b/34c/449, that were detected in human lung, testis, and fallopian tubes but not in other normal tissues, were filtered by representation of GO terms and their ability to classify lung cancer subtypes, followed by a meta-analysis of microarray data to classify AD and SCC. Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes derived from the developmental process GO category was identified from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. The accuracy of prediction still remains comparable when classifying 103 AD and 79 SCC samples from another 4 published datasets that have only 14 to 16 of the 17 genes available for prediction (84% and 85% for AD and SCC, respectively). Expression of this signature in two published datasets of epithelial cells obtained at bronchoscopy from cigarette smokers, if combined with cytopathology of the cells, yielded 89–90% sensitivity of lung cancer detection and 87–90% negative predictive value to non-cancer patients.</p> <p>Conclusion</p> <p>This study focuses on predicted targets of three lung-enriched miRNAs, compares their expression patterns in lung cancer by their GO terms, and identifies a minimal set of genes differentially expressed in AD and SCC, followed by validating this gene signature in multiple published datasets. Expression of this gene signature in bronchial epithelial cells of cigarette smokers also has a great sensitivity to predict the patients having lung cancer if combined with cytopathology of the cells.</p

    Choice of psychological coping in laryngectomized, head and neck squamous cell carcinoma patients versus multiple sclerosis patients

    Get PDF
    To be treated for cancer must be a frightening experience. Yet quality of life (QoL) of successfully treated cancer patients seems to be relatively similar in comparison with QoL of a general population, with psychological coping partly responsible for this finding. When measuring choice of coping, the nature of coping score levels constituting appropriate scores, and whether score levels rely on the context of the disease has not been settled. We have studied the COPE coping responses as related to disease in successfully treated head and neck squamous cell carcinoma (HNSCC) patient groups (general and laryngectomized), as well as compared to multiple sclerosis (MS) patients. The COPE response patterns have also been compared to the Beck depression inventory (BDI) scores. Age and gender of patients were not directly associated with choice of coping. Within the problem-focused coping indexes, the coping index “active coping” was reported to be most utilized among HNSCC patients, whereas “coping by suppression” and “coping by social support” were most utilized among MS patients. Emotional-focused coping was most prevalent among HNSCC patients and lowest among the MS patients. Level of avoidance coping was similar between the groups. The coping of the general HNSCC patients differed most from the MS patients. An association was shown between increased coping efforts and lowered mood. In particular, avoidance coping was associated with lowered mood. These associations were stronger among the MS patients than HNSCC patients. Drinking to cope was most prevalent among the laryngectomized group, and was correlated with BDI scores in all groups. Furthermore, adequate coping seems to be to limit avoidance coping and promote coping by acceptance. The response pattern of the COPE inventory seems to be valid among HNSCC and MS patients

    Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    Get PDF
    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism

    Whose Sense of Place? A Political Ecology of Amenity Development

    Get PDF
    Using a political ecology framework, this chapter examines the ways in which sense of place and amenity migration contribute to alternative residential development, which relies on uneven use of conservation subdivision features in the American West. Using case studies from Central Oregon, this chapter demonstrates how senses of place and developer decision-making are tied to wider political economic changes. It highlights the roles that amenity migrants and developers, two groups that are sometimes identical, play in landscape transformations that simultaneously draw on a particular sense of place and commodify landscapes in new ways

    Association between expatriation and HIV awareness and knowledge among injecting drug users in Kabul, Afghanistan: A cross-sectional comparison of former refugees to those remaining during conflict

    Get PDF
    BACKGROUND: Little is known about human immunodeficiency virus (HIV) awareness among Afghan injecting drug users (IDUs), many of whom initiated injecting as refugees. We explored whether differences in HIV awareness and knowledge exist between Afghan IDUs who were refugees compared to those never having left Afghanistan. METHODS: A convenience sample of IDUs in Kabul, Afghanistan was recruited into a cross-sectional study through street outreach over a one year period beginning in 2005. Participants completed an interviewer-administered questionnaire and underwent voluntary counseling and testing for HIV, syphilis, hepatitis B surface antigen, and hepatitis C antibody. Differences in HIV awareness and specific HIV knowledge between IDU who lived outside the country in the last decade versus those who had not were assessed with logistic regression. RESULTS: Of 464 IDUs, 463 (99%) were male; median age and age at first injection were 29 and 25 years, respectively. Most (86.4%) had lived or worked outside the country in the past ten years. Awareness of HIV was reported by 46.1%; those having been outside the country in the last decade were significantly more likely to have heard of HIV (48.3% vs. 31.7%; OR = 2.00, 95% CI: 1.14 – 3.53). However, of those aware of HIV, only 38.3% could name three correct transmission routes; specific HIV knowledge was not significantly associated with residence outside the country. CONCLUSION: Accurate HIV knowledge among Afghan IDUs is low, though former refugees had greater HIV awareness. Reported high-risk injecting behavior was not significantly different between IDU that were refugees and those that did not leave the country, indicating that all Afghan IDU should receive targeted prevention programming
    corecore