181 research outputs found

    Method for rating power cables buried in surface troughs

    No full text
    An alternative method is detailed by which the ambient temperature parameter as applied to the calculation of ratings of cables buried in surface trough installations can be determined. Improvement in the accuracy of cable rating calculations will allow greater utilisation of the cable asset and assist for example in the planning of system outages for maintenance work. The proposed model calculates the temperature at the cable burial depth based on measurements of solar radiation, windspeed and air temperature. The model is based on physical laws rather than empirical approaches that have been shown to be generally conservative in application. Results based on weather data monitored over a two-year period show that the ambient temperature of the soil at cable depth can be accurately determined and the model provides a significant improvement on existing methods

    Motor Performance as Risk Factor for Lower Extremity Injuries in Children

    Get PDF
    Purpose: Physical activity related injuries in children constitute a costly public health matter. The influence of motor performance on injury risk is unclear. The purpose was to examine if motor performance was a risk factor of traumatic and overuse lower extremity injuries in a normal population of children. Methods: This study included 1244 participants from 8 to 14-years-old at baseline, all participating in "the Childhood Health, Activity and Motor Performance School Study Denmark". The follow-up period was up to 15 months. The motor performance tests were static balance, single leg hop for distance, core stability tests, vertical jump, shuttle run, and a cardiorespiratory fitness test. Lower extremity injuries were registered by clinicians by weekly questionnaires and classified according to the ICD-10 system. Results: Poor balance increased risk for traumatic injury in the foot region (IRR=1.09-1.15), and good performance in single leg hop for distance protected against traumatic knee injuries (IRR=0.66-0.68). Good performance in core stability tests and vertical jump increased the risk for traumatic injuries in the foot region (IRR=1.12-1.16). Poor balance increased the risk for overuse injuries in the foot region (IRR=1.65), as did good performance in core stability tests and shuttle run, especially for knee injuries (IRR=1.07-1.18). Conclusions: Poor balance (sway) performance was a consistent predictor of traumatic injuries, in particular for traumatic ankle injuries. Good motor performance (core stability, vertical jump, shuttle run) was positively associated with traumatic and overuse injuries, and negatively (single leg hop) associated with traumatic injuries, indicating different influence on injury risk. Previous injury was a confounder affecting the effect size and the significance. More studies are needed to consolidate the findings, to clarify the influence of different performance tests on different types of injuries and to examine the influence of behaviour in relation to injury ris

    Method for rating power cables buried in surface troughs

    Full text link

    Energy funneling in a bent chain of Morse oscillators with long-range coupling

    Get PDF
    A bent chain of coupled Morse oscillators with long-range dispersive interaction is considered. Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like an impurity. An energy funneling effect is observed in the case of random initial conditions.Comment: 6 pages, 12 figures. Submitted to Physical Review E, Oct. 13, 200

    Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation

    No full text
    Frontotemporal dementia (FTD)-causing mutations in the CHMP2B gene lead to the generation of mutant C-terminally truncated CHMP2B. We report that transgenic mice expressing endogenous levels of mutant CHMP2B developed late-onset brain volume loss associated with frank neuronal loss and FTD-like changes in social behaviour. These data are the first to show neurodegeneration in mice expressing mutant CHMP2B and indicate that our mouse model is able to recapitulate neurodegenerative changes observed in FTD. Neuroinflammation has been increasingly implicated in neurodegeneration, including FTD. Therefore, we investigated neuroinflammation in our CHMP2B mutant mice. We observed very early microglial proliferation that develops into a clear pro-inflammatory phenotype at late stages. Importantly, we also observed a similar inflammatory profile in CHMP2B patient frontal cortex. Aberrant microglial function has also been implicated in FTD caused by GRN, MAPT and C9orf72 mutations. The presence of early microglial changes in our CHMP2B mutant mice indicates neuroinflammation may be a contributing factor to the neurodegeneration observed in FTD

    UHECR as Decay Products of Heavy Relics? The Lifetime Problem

    Full text link
    The essential features underlying the top-down scenarii for UHECR are discussed, namely, the stability (or lifetime) imposed to the heavy objects (particles) whatever they be: topological and non-topological solitons, X-particles, cosmic defects, microscopic black-holes, fundamental strings. We provide an unified formula for the quantum decay rate of all these objects as well as the particle decays in the standard model. The key point in the top-down scenarii is the necessity to adjust the lifetime of the heavy object to the age of the universe. This ad-hoc requirement needs a very high dimensional operator to govern its decay and/or an extremely small coupling constant. The natural lifetimes of such heavy objects are, however, microscopic times associated to the GUT energy scale (sim 10^{-28} sec. or shorter). It is at this energy scale (by the end of inflation) where they could have been abundantly formed in the early universe and it seems natural that they decayed shortly after being formed.Comment: 11 pages, LaTex, no figures, updated versio
    • …
    corecore