419 research outputs found

    Rapid Communication: The Very-Long-Chain Acyl-CoA Dehydrogenase Gene Maps to Pig Chromosome 12

    Get PDF
    Source and Description of Primers. Primers for the very-long-chain acyl-CoA dehydrogenase (ACADVL) gene were designed from a bovine cDNA sequence (GenBank accession No. U30817) aligned with the human ACADVL gene (GenBank accession No. L46590). The forward primer was 5¢-TTT GGG GAG AAA ATT CAC AAC-3¢ and the reverse primer was 5¢-GCG GCC TCT ATC TGG AAG T-3¢. The amplification product was expected to span from exon 11 to exon 12 of the ACADVL gene. Exonic parts (103 bp) of the pig sequence were 91% identical at the nucleotide level with the human ACADVL sequence. The pig sequence produced here has been submitted to GenBank (accession no. AF022255)

    Rapid Communication: A HincII Polymorphism in the Porcine Calpain, Large Polypeptide L3 (CAPN3) Gene

    Get PDF
    Source and Description of Primers. Primers were designed from a published, partial porcine cDNA sequence (Genbank accession no. U05678) in positions corresponding to exons 11 and 13 of the human CAPN3 gene (Genbank accession no. X85030). Sequences were obtained from the ends of the PCR fragment and compared with the porcine cDNA sequence showing 98.1% identity in a 108-bp overlap at the exon 11 end and 99.2% identity in a 124-bp overlap at the exon 13 end. Sequences produced in this study have been submitted to Genbank (accession no. AF025660-AF025661)

    Influenza research database: an integrated bioinformatics resource for influenza research and surveillance.

    Get PDF
    BackgroundThe recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics.DesignThe Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature.ResultsTo demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks.ConclusionsThe IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics

    BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence

    Get PDF
    The BioHealthBase Bioinformatics Resource Center (BRC) (http://www.biohealthbase.org) is a public bioinformatics database and analysis resource for the study of specific biodefense and public health pathogens—Influenza virus, Francisella tularensis, Mycobacterium tuberculosis, Microsporidia species and ricin toxin. The BioHealthBase serves as an extensive integrated repository of data imported from public databases, data derived from various computational algorithms and information curated from the scientific literature. The goal of the BioHealthBase is to facilitate the development of therapeutics, diagnostics and vaccines by integrating all available data in the context of host–pathogen interactions, thus allowing researchers to understand the root causes of virulence and pathogenicity. Genome and protein annotations can be viewed either as formatted text or graphically through a genome browser. 3D visualization capabilities allow researchers to view proteins with key structural and functional features highlighted. Influenza virus host–pathogen interactions at the molecular/cellular and systemic levels are represented. Host immune response to influenza infection is conveyed through the display of experimentally determined antibody and T-cell epitopes curated from the scientific literature or as derived from computational predictions. At the molecular/cellular level, the BioHealthBase BRC has developed biological pathway representations relevant to influenza virus host–pathogen interaction in collaboration with the Reactome database (http://www.reactome.org)

    From theory to practice in pattern?oriented modelling: identifying and using empirical patterns in predictive models

    Get PDF
    To robustly predict the effects of disturbance and ecosystem changes on species, it is necessary to produce structurally realistic models with high predictive power and flexibility. To ensure that these models reflect the natural conditions necessary for reliable prediction, models must be informed and tested using relevant empirical observations. Pattern?oriented modelling (POM) offers a systematic framework for employing empirical patterns throughout the modelling process and has been coupled with complex systems modelling, such as in agent?based models (ABMs). However, while the production of ABMs has been rising rapidly, the explicit use of POM has not increased. Challenges with identifying patterns and an absence of specific guidelines on how to implement empirical observations may limit the accessibility of POM and lead to the production of models which lack a systematic consideration of reality. This review serves to provide guidance on how to identify and apply patterns following a POM approach in ABMs (POM?ABMs), specifically addressing: where in the ecological hierarchy can we find patterns; what kinds of patterns are useful; how should simulations and observations be compared; and when in the modelling cycle are patterns used? The guidance and examples provided herein are intended to encourage the application of POM and inspire efficient identification and implementation of patterns for both new and experienced modellers alike. Additionally, by generalising patterns found especially useful for POM?ABM development, these guidelines provide practical help for the identification of data gaps and guide the collection of observations useful for the development and verification of predictive models. Improving the accessibility and explicitness of POM could facilitate the production of robust and structurally realistic models in the ecological community, contributing to the advancement of predictive ecology at large

    Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

    Get PDF
    A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of 108GeVcm2s1sr110^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1} per flavor and reject a purely atmospheric explanation for the combined 3-year data at 5.7σ5.7 \sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year dataset, with a livetime of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event displays, and other data tables are included after the final page of the article. Changed from the initial submission to reflect referee comments, expanding the section on atmospheric backgrounds, and fixes offsets of up to 0.9 seconds in reported event times. Address correspondence to: J. Feintzeig, C. Kopper, N. Whitehor

    ViPR: an open bioinformatics database and analysis resource for virology research

    Get PDF
    The Virus Pathogen Database and Analysis Resource (ViPR, www.ViPRbrc.org) is an integrated repository of data and analysis tools for multiple virus families, supported by the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers (BRC) program. ViPR contains information for human pathogenic viruses belonging to the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and Togaviridae families, with plans to support additional virus families in the future. ViPR captures various types of information, including sequence records, gene and protein annotations, 3D protein structures, immune epitope locations, clinical and surveillance metadata and novel data derived from comparative genomics analysis. Analytical and visualization tools for metadata-driven statistical sequence analysis, multiple sequence alignment, phylogenetic tree construction, BLAST comparison and sequence variation determination are also provided. Data filtering and analysis workflows can be combined and the results saved in personal ‘Workbenches’ for future use. ViPR tools and data are available without charge as a service to the virology research community to help facilitate the development of diagnostics, prophylactics and therapeutics for priority pathogens and other viruses

    Climate Change, Human Health, and Resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address
    corecore