9 research outputs found

    VolKilau: Volcano rapid response balloon campaign during the 2018 Kilauea eruption

    Get PDF
    After nearly 35 years of stable activity, the Kilauea volcanic system in Hawaii went through sudden changes in May 2018 with the emergence of 20 volcanic fissures along the Lower Eastern Rift Zone (LERZ), destroying 700 homes in Leilani Estates and forcing more than 2,000 people to evacuate. Elevated volcanic emissions lasted for several months between May and September 2018, leading to low visibility and poor air quality in Hawaii and across the western Pacific. The NASA-funded VolKilau mission was rapidly mounted and conducted between 11 and 18 June 2018 to (i) profile volcanic emissions with SO2 and aerosol measurements, (ii) validate satellite observations, and (iii) increase readiness for the next large volcanic eruption. Through a series of balloon-borne measurements with tethered and free-released launches, we measured SO2 concentration, aerosol concentration, and optical properties 60–80 km downwind from the volcanic fissures using gas sensors, optical particle counters, backscatter sondes, and an aerosol impactor. While most of the measurements made during the Kilauea eruption were ground based, the VolKilau mission represented a unique opportunity to characterize plume properties, constrain emission profiles, study early chemistry involving the conversion of SO2 into sulfuric acid, and understand the influence of water clouds in the removal of SO2. This unprecedented combination of measurements has significantly improved our team’s ability to assess the atmospheric and human impacts of a major event such as this

    ウィスコンシン ダイガク マディソンコウ ガ ジッシ シテイル ナンキョク ムジン キショウ カンソク (AWS) ケイカク ノ 2011-2012 ネン カキ ノ カツドウ

    Get PDF
    ウィスコンシン大学マディソン校で推進している南極無人気象観測計画(Antarctic Automatic Weather Station(AWS)program)の32 年目の観測が,2011/2012年の南半球夏期に完了した.無人気象観測網を利用して南極の気象と気候の研究が行われている.今シーズンはロス島周辺域,ロス棚氷,西南極,東南極にわたる領域で活動した.基本的に観測点のデータはアルゴス衛星を中継して配信されるが,今年はロス島周辺域の多くの観測点で,マクマード基地を中継して"Freewave modem"を通して配信された.各無人気象観測点報告には,現在設置されている測器と動作状況が含まれる.また,無人気象観測計画の全体像を,野外活動の実施状況に沿って示す.During the 2011-2012 austral summer, the Antarctic Automatic Weather Station (AWS) program at the University of Wisconsin?Madison completed its 32nd year of observations. Ongoing studies utilizing the network include topics in Antarctic meteorology and climate studies. This field season consisted of work throughout the Ross Island area, the Ross Ice Shelf, West Antarctica, and East Antarctica. Argos satellite transmissions are the primary method for relaying station data, but throughout this year, a number of stations in the Ross Island area have been converted to Freewave modems, with their data being relayed through McMurdo station. Each AWS station report contains information regarding the instrumentation currently installed and the work performed at each site. An overview of the AWS applications is included along with field work accomplished

    Tropical Wave Observations From the Reel‐Down Atmospheric Temperature Sensor (RATS) in the Lowermost Stratosphere During Strateole‐2

    No full text
    Tropical waves play an important role in driving the quasi‐biennial oscillation of zonal winds in the tropical stratosphere. In our study we analyze these waves based on temperature observations from the 2021–2022 Strateole‐2 campaign when the Reel‐down Atmospheric Temperature Sensor (RATS) was successfully deployed for the first time. RATS provides long‐duration, continuous and simultaneous high‐resolution temperature observations at two altitudes (balloon float level and 200 m below) allowing for an analysis of vertical wavelengths. This separation distance was chosen to focus on waves near the resolution limit of reanalyses. Here, we found tropical waves with periods between about 6 hr and 2 days, with vertical wavelengths between 1.5 and 5 km, respectively. Comparing our results to Fifth generation European Centre for Medium‐Range Weather Forecasts (ERA5) reanalyses we found good agreement for waves with a period longer than 1 day. However, the ERA5 amplitudes of higher‐frequency waves are under‐estimated, and the temporal evolution of most wave packets differs from the observations

    First measurements of fine-vertical-scale wave impacts on the tropical lower stratosphere

    No full text
    International audienceAtmospheric waves in the tropical tropopause layer are recognized as a significant influence on processes that impact global climate. For example, waves drive the quasi-biennial oscillation (QBO) in equatorial stratospheric winds and modulate occurrences of cirrus clouds. However, the QBO in the lower stratosphere and thin cirrus have continued to elude accurate simulation in state-of-the-art climate models and seasonal forecast systems. We use first-of-their-kind profile measurements deployed beneath a long-duration balloon to provide new insights into impacts of fine-scale waves on equatorial cirrus clouds and the QBO just above the tropopause. Analysis of these balloon-borne measurements reveals previously uncharacterized fine-vertical-scale waves (1000km) and multiday periods. These waves affect cirrus clouds and QBO winds in ways that could explain current climate model shortcomings in representing these stratospheric influences on climate. Accurately simulating these fine-vertical-scale processes thus has the potential to improve sub-seasonal to near-term climate prediction

    First super-pressure balloon-borne fine-vertical-scale profiles in the upper TTL: Impacts of atmospheric waves on cirrus clouds and the QBO

    No full text
    International audienceAtmospheric waves in the tropical tropopause layer are recognized as a significant influence on processes that impact global climate. For example, waves drive the quasi-biennial oscillation (QBO) in equatorial stratospheric winds and modulate occurrences of cirrus clouds. However, the QBO in the lower stratosphere and thin cirrus have continued to elude accurate simulation in state-of-the-art climate models and seasonal forecast systems. We use first-of-their-kind profile measurements deployed beneath a long-duration balloon to provide new insights into impacts of fine-scale waves on equatorial cirrus clouds and the QBO just above the tropopause. Analysis of these balloon-borne measurements reveals previously uncharacterized fine-vertical-scale waves ( 1000km) and multiday periods. These waves affect cirrus clouds and QBO winds in ways that could explain current climate model shortcomings in representing these stratospheric influences on climate. Accurately simulating these fine-vertical-scale processes thus has the potential to improve sub-seasonal to near-term climate prediction

    A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneathconstant-altitude scientific balloons

    No full text
    International audienceThe Tropical Tropopause Layer (14-18.5 km) is the gateway for most air entering the stratosphere, and therefore processes within this layer have an outsized influence in determining global stratospheric ozone and water vapor concentrations. Despite the importance of this layer there are few in situ measurements with the necessary detail to resolve the fine scale processes within this region. Here, we introduce a novel platform for high resolution in situ profiling that lowers and retracts a suspended instrument package beneath drifting long duration balloons in the tropics. During a 100-day 20 circumtropical flight, the instrument collected over 100 two-kilometer profiles of temperature, water vapor and aerosol at one-meter resolution, yielding unprecedented geographic sampling and vertical resolution. The instrument system integrates proven sensors for water vapor, temperature, pressure and cloud and aerosol particles with an innovative mechanical reeling and control system. A technical evaluation of the system performance demonstrated the feasibility of this new measurement platform for future missions with minor modifications. Six instruments planned for two upcoming field 25 campaigns are expected to provide over 4000 profiles through the TTL, quadrupling the number of high-resolution aircraft and balloon profiles collected to date. These and future measurements will provide the necessary resolution to diagnose the importance of competing mechanisms for the transport of water vapor across the TTL

    Automatic Weather Station (AWS) Program operated by the University of Wisconsin-Madison during the 2011-2012 field season

    No full text
    During the 2011-2012 austral summer, the Antarctic Automatic Weather Station (AWS) program at the University of Wisconsin?Madison completed its 32nd year of observations. Ongoing studies utilizing the network include topics in Antarctic meteorology and climate studies. This field season consisted of work throughout the Ross Island area, the Ross Ice Shelf, West Antarctica, and East Antarctica. Argos satellite transmissions are the primary method for relaying station data, but throughout this year, a number of stations in the Ross Island area have been converted to Freewave modems, with their data being relayed through McMurdo station. Each AWS station report contains information regarding the instrumentation currently installed and the work performed at each site. An overview of the AWS applications is included along with field work accomplished

    Automatic Weather Station (AWS) Program operated by the University of Wisconsin-Madison during the 2012-2013 field season: Challenges and Successes

    No full text
    This report reviews 2012-2013 field season activities of the University of Wisconsin-Madison's Antarctic Automatic Weather Station (AWS) program, summarizes the science that these sites are supporting, and outlines the factors that impact the number of AWS sites serviced in any given field season. The 2012-2013 austral summer season was unusual in the AWS network history. Challenges encountered include, but are not limited to, warmer than normal conditions in the Ross Island area impacting airfield operations, changes to logistical procedures, and competition for shared resources. A flexible work plan provides the best means for taking on these challenges while maximizing AWS servicing efforts under restricted conditions and meeting the need for routine servicing that maintaining an autonomous observing network demands

    The Concordiasi Project in Antarctica

    No full text
    International audienceThe Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows: 1. To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the understanding of the Earth system by examining the interactions between Antarctica and lower latitudes. 2. To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed. A major Concordiasi component is a field experiment during the austral springs of 2008-10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release drop-sondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station
    corecore