56 research outputs found

    Transformations de l'isopropanol sur solides aluminiques : une approche mixte expérimentale / modélisation multi-échelle

    Get PDF
    The upgrading of lignocellulosic biomass into strategic molecules for the chemical industry requires the adaptation of refining procedures to the transformation of oxygenated species. In this context, the dehydration of alcohols has seen renewed interest over the last decade. The work presented here aims at unravelling the reactivity of a model alcohol (isopropanol) over aluminic catalysts at the molecular scale. To this purpose, a study combining experiments and modelling at the molecular scale (DFT) and at the reactor scale (kinetic modelling) has been set up. By combining infrared spectroscopic experiments, kinetic measurements and molecular modelling of the adsorption and reaction pathways of isopropanol on gamma alumina, it is shown that this reactivity is mainly governed by the (100) facets of alumina. The competing formation of propene (major product) and diisopropylether (minor product) involves a common alcoolate intermediate adsorbed on a Lewis acidic aluminium atom, either by direct elimination of a water molecule (E2 mechanism) or by condensation with a second alcohol molecule adsorbed in vicinity (SN2 mechanism).A micro-kinetic model involving this single reaction site and including the transformation of the ether into isopropanol and propene allows reproducing the experimental results, provided that the effect of co-adsorbed water and alcohol molecules in the environment of the active site is taken into account, as the formation of water – intermediate dimers and the stabilization of the second alcohol molecule both contribute to an adjustment of the ether/propene ratio.La valorisation de la biomasse lignocellulosique en molĂ©cules plateforme pour l'industrie chimique rend nĂ©cessaire l'adaptation des mĂ©thodes de raffinage Ă  la transformation de composĂ©s organiques oxygĂ©nĂ©s. La dĂ©shydratation des alcools connaĂźt dans ce contexte un fort regain d'intĂ©rĂȘt. Les travaux de cette thĂšse s'attachent Ă  comprendre Ă  l'Ă©chelle molĂ©culaire la rĂ©activitĂ© d'un alcool modĂšle (isopropanol) sur catalyseurs aluminiques, au travers d'une Ă©tude mettant en jeu expĂ©riences et modĂ©lisation aux Ă©chelles molĂ©culaire (DFT) et du rĂ©acteur (modĂ©lisation cinĂ©tique). En combinant expĂ©riences de spectroscopie infrarouge, mesures cinĂ©tiques et modĂ©lisation molĂ©culaire appliquĂ©e Ă  l'adsorption et aux chemins rĂ©actionnels de l'isopropanol sur l'alumine gamma, il est montrĂ© que la rĂ©activitĂ© de cet alcool est principalement gouvernĂ©e par la facette (100) de l'alumine. Les formations compĂ©titives de propĂšne, majoritaire, et de diisopropylĂ©ther, minoritaire, impliquent un mĂȘme intermĂ©diaire alcoolate, adsorbĂ© sur un atome d'aluminium acide de Lewis, qui Ă©volue soit par Ă©limination directe d'une molĂ©cule d'eau (mĂ©canisme E2), soit par condensation avec une seconde molĂ©cule d'alcool adsorbĂ©e Ă  proximitĂ© (mĂ©canisme SN2). Un modĂšle microcinĂ©tique fondĂ© sur ce site unique de rĂ©action, incluant de surcroĂźt la dĂ©composition de l'Ă©ther en isopropanol et en propĂšne, permet de reproduire les rĂ©sultats expĂ©rimentaux Ă  condition de prendre en compte l'effet de molĂ©cules d'eau et d'alcool co-adsorbĂ©es dans l'environnement du site actif, la formation de dimĂšres eau - intermĂ©diaire et la stabilisation de la seconde molĂ©cule d'alcool contribuant Ă  l'ajustement du rapport Ă©ther/propĂšne

    Conversion of isopropanol on aluminic materials : a mixed experimental and multi-scale modeling approach

    No full text
    La valorisation de la biomasse lignocellulosique en molĂ©cules plateforme pour l'industrie chimique rend nĂ©cessaire l'adaptation des mĂ©thodes de raffinage Ă  la transformation de composĂ©s organiques oxygĂ©nĂ©s. La dĂ©shydratation des alcools connaĂźt dans ce contexte un fort regain d'intĂ©rĂȘt. Les travaux de cette thĂšse s'attachent Ă  comprendre Ă  l'Ă©chelle molĂ©culaire la rĂ©activitĂ© d'un alcool modĂšle (isopropanol) sur catalyseurs aluminiques, au travers d'une Ă©tude mettant en jeu expĂ©riences et modĂ©lisation aux Ă©chelles molĂ©culaire (DFT) et du rĂ©acteur (modĂ©lisation cinĂ©tique). En combinant expĂ©riences de spectroscopie infrarouge, mesures cinĂ©tiques et modĂ©lisation molĂ©culaire appliquĂ©e Ă  l'adsorption et aux chemins rĂ©actionnels de l'isopropanol sur l'alumine gamma, il est montrĂ© que la rĂ©activitĂ© de cet alcool est principalement gouvernĂ©e par la facette (100) de l'alumine. Les formations compĂ©titives de propĂšne, majoritaire, et de diisopropylĂ©ther, minoritaire, impliquent un mĂȘme intermĂ©diaire alcoolate, adsorbĂ© sur un atome d'aluminium acide de Lewis, qui Ă©volue soit par Ă©limination directe d'une molĂ©cule d'eau (mĂ©canisme E2), soit par condensation avec une seconde molĂ©cule d'alcool adsorbĂ©e Ă  proximitĂ© (mĂ©canisme SN2). Un modĂšle microcinĂ©tique fondĂ© sur ce site unique de rĂ©action, incluant de surcroĂźt la dĂ©composition de l'Ă©ther en isopropanol et en propĂšne, permet de reproduire les rĂ©sultats expĂ©rimentaux Ă  condition de prendre en compte l'effet de molĂ©cules d'eau et d'alcool co-adsorbĂ©es dans l'environnement du site actif, la formation de dimĂšres eau - intermĂ©diaire et la stabilisation de la seconde molĂ©cule d'alcool contribuant Ă  l'ajustement du rapport Ă©ther/propĂšne.The upgrading of lignocellulosic biomass into strategic molecules for the chemical industry requires the adaptation of refining procedures to the transformation of oxygenated species. In this context, the dehydration of alcohols has seen renewed interest over the last decade. The work presented here aims at unravelling the reactivity of a model alcohol (isopropanol) over aluminic catalysts at the molecular scale. To this purpose, a study combining experiments and modelling at the molecular scale (DFT) and at the reactor scale (kinetic modelling) has been set up. By combining infrared spectroscopic experiments, kinetic measurements and molecular modelling of the adsorption and reaction pathways of isopropanol on gamma alumina, it is shown that this reactivity is mainly governed by the (100) facets of alumina. The competing formation of propene (major product) and diisopropylether (minor product) involves a common alcoolate intermediate adsorbed on a Lewis acidic aluminium atom, either by direct elimination of a water molecule (E2 mechanism) or by condensation with a second alcohol molecule adsorbed in vicinity (SN2 mechanism).A micro-kinetic model involving this single reaction site and including the transformation of the ether into isopropanol and propene allows reproducing the experimental results, provided that the effect of co-adsorbed water and alcohol molecules in the environment of the active site is taken into account, as the formation of water – intermediate dimers and the stabilization of the second alcohol molecule both contribute to an adjustment of the ether/propene ratio

    What Can We Learn from First Principles Multi-Scale Models in Catalysis? The Role of the Ni/Al 2 O 3 Interface in Water-Gas Shift and Dry Reforming as a Case Study

    Get PDF
    International audienceComputational first principles models based on density functional theory (DFT) have emerged as an important tool to address reaction mechanisms and active sites in metal nanoparticle catalysis. However, the common evaluation of potential energy surfaces for selected reaction steps contrasts with the complexity of reaction networks under operating conditions, where the interplay of adsorbate populations and competing routes at reaction conditions determine the most relevant states for catalyst activity and selectivity. Here, we discuss how the use of a multi-scale first principles approach combining DFT calculations at the atomistic level with kinetic models may be used to understand reactions catalyzed by metal nanoparticles. The potential of such an approach is illustrated for the case of Al 2 O 3-supported Ni nanoparticle catalysts in the water-gas shift and dry reforming reactions. In these systems, both Ni nanoparticle (metal) as well as metal/oxide interface sites are available and may play a role in catalysis, which depends not only on the energy for critical reaction steps, as captured by DFT, but also on the reaction temperature and adsorbate populations, as shown by microkinetic modelling and experiments

    CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3

    No full text
    The hydrogenation of CO2 to CH3OH is mostly performed by a catalyst consisting mainly of copper and zinc (Cu/ZnO/Al2O3). Here, Cu-Zn based catalysts are generated using surface organometallic chemistry (SOMC) starting from a material consisting of isolated ZnII surface sites dispersed on SiO2 – ZnII@SiO2. Grafting of [Cu(OtBu)]4 on the surface silanols available on ZnII@SiO2 followed by reduction at 500 °C under H2 generates CuZnx alloy nanoparticles with remaining ZnII sites according to X-ray absorption spectroscopy (XAS). This Cu-Zn/SiO2 material displays high catalytic activity and methanol selectivity, in particular at higher conversion compared to benchmark Cu/ZnO/Al2O3 and most other catalysts. In situ XAS shows that CuZnx alloy is partially converted into Cu(0) and Zn(II) under reaction conditions, while ex situ solid state nuclear magnetic resonance and infrared spectroscopic studies only indicate the presence of methoxy species and no formate intermediates are detected, in contrast to most Cu-based catalysts. The absence of formate species is consistent with the higher methanol selectivity as recently found for the related Cu-Ga/SiO2.ISSN:0021-9517ISSN:1090-269

    Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts

    No full text
    Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(IV) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(IV) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(IV) surface sites that stabilizes reaction intermediates.ISSN:1872-206

    Surface Sites in Cu-Nanoparticles: Chemical Reactivity or Microscopy?

    No full text
    Copper nanoparticles are widely used in catalysis and electrocatalysis, and the fundamental understanding of their activity requires reliable methods to assess the number of potentially reactive atoms exposed on the surface. Herein, we provide a molecular understanding of the difference observed in addressing surface site titration using prototypical methods: transmission electron micrscopy (TEM), H<sub>2</sub> chemisorption, and N<sub>2</sub>O titration by a combination of experimental and theoretical study. We show in particular that microscopy does not allow assessing the amount of reactive surface sites, while H<sub>2</sub> and N<sub>2</sub>O chemisorptions can, albeit with slightly different stoichiometries (1 O/2Cu<sub>S</sub> and 1 H<sub>2</sub>/2.2Cu<sub>S</sub>), which can be rationalized by density functional theory calculations. High-resolution TEM shows that the origin of the observed difference between microscopy and titration methods is due to the strong metal support interaction experienced by small copper nanoparticles with the silica surface
    • 

    corecore