14 research outputs found

    An illustrated anatomical ontology of the developing mouse lower urogenital tract

    Get PDF
    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation

    E-Mail [email protected] Phallus Development in the Turtle Trachemys scripta

    No full text
    homologous structures. We find that acquisition of specialized characters, such as a closed urethral tube, involved lineage-specific specialization of the common plan for amniote phallus development. 漏 2014 S. Karger AG, Basel The transition of tetrapods from an aquatic to a terrestrial environment resulted from the evolution of a suite of traits that enabled land dwelling. A key innovation that allowed reproductive success in a terrestrial environment was the evolution of the amniotic egg which does not require an aquatic environment for fertilization or development but instead requires internal fertilization Considerable variation exists in phallus structure and function, from the shape of the phallus to the method of erection Key Words Genital tubercle 路 Phallus 路 Sulcus 路 Trachemys scripta 路 Turtle 路 Urethra Abstract Development of a phallus occurs in almost all amniotes; however, considerable variation in phallus morphology among different amniote lineages has contributed to the debate about their structural homology. Mammals are the only amniotes that form a closed urethral tube within the penis. In contrast, the phallus of reptiles and birds has an open urethral groove, or sulcus spermaticus, that facilitates directional flow of sperm along the penis. One condition of structural homology is that the organs should share a common developmental origin; de novo development from different embryonic progenitors would indicate that the structure re-evolved in a new position. Although a common developmental origin does not itself demonstrate homology, different origins could indicate a lack of homology. To further understand how development of external genitalia evolved in amniotes, we examined this in the turtle Trachemys scripta. We found that phallus development in the turtle closely resembles that of mice at the tissue, cellular, and molecular levels, consistent with the hypothesis that their phalluses ar

    Mutations In Cspp1 Cause Primary Cilia Abnormalities And Joubert Syndrome With Or Without Jeune Asphyxiating Thoracic Dystrophy

    Get PDF
    Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain similar to 5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.WoSScopu
    corecore