72 research outputs found

    Estimating the Hospital Burden of Norovirus-Associated Gastroenteritis in England and Its Opportunity Costs for Nonadmitted Patients.

    Get PDF
    Background: Norovirus places a substantial burden on healthcare systems, arising from infected patients, disease outbreaks, beds kept unoccupied for infection control, and staff absences due to infection. In settings with high rates of bed occupancy, opportunity costs arise from patients who cannot be admitted due to beds being unavailable. With several treatments and vaccines against norovirus in development, quantifying the expected economic burden is timely. Methods: The number of inpatients with norovirus-associated gastroenteritis in England was modeled using infectious and noninfectious gastrointestinal Hospital Episode Statistics codes and laboratory reports of gastrointestinal pathogens collected at Public Health England. The excess length of stay from norovirus was estimated with a multistate model and local outbreak data. Unoccupied bed-days and staff absences were estimated from national outbreak surveillance. The burden was valued conventionally using accounting expenditures and wages, which we contrasted to the opportunity costs from forgone patients using a novel methodology. Results: Between July 2013 and June 2016, 17.7% (95% confidence interval [CI], 15.6%‒21.6%) of primary and 23.8% (95% CI, 20.6%‒29.9%) of secondary gastrointestinal diagnoses were norovirus attributable. Annually, the estimated median 290000 (interquartile range, 282000‒297000) occupied and unoccupied bed-days used for norovirus displaced 57800 patients. Conventional costs for the National Health Service reached £107.6 million; the economic burden approximated to £297.7 million and a loss of 6300 quality-adjusted life-years annually. Conclusions: In England, norovirus is now the second-largest contributor of the gastrointestinal hospital burden. With the projected impact being greater than previously estimated, improved capture of relevant opportunity costs seems imperative for diseases such as norovirus

    Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa

    Get PDF
    Background:The ST313 sequence type ofSalmonellaTyphimurium causes invasive non-typhoidal salmonellosis and wasthought to be confined to sub-Saharan Africa. Two distinct phylogenetic lineages of African ST313 have been identified.Methods:We analysed the whole genome sequences ofS. Typhimurium isolates from UK patients that weregenerated following the introduction of routine whole-genome sequencing (WGS) ofSalmonella entericabyPublic Health England in 2014.Results:We found that 2.7% (84/3147) ofS. Typhimurium from patients in England and Wales were ST313 and wereassociated with gastrointestinal infection. Phylogenetic analysis revealed novel diversity of ST313 that distinguishedUK-linked gastrointestinal isolates from African-associated extra-intestinal isolates. The majority of genome degradationof African ST313 lineage 2 was conserved in the UK-ST313, but the African lineages carried a characteristic prophageand antibiotic resistance gene repertoire. These findings suggest that a strong selection pressure exists for certainhorizontally acquired genetic elements in the African setting. One UK-isolated lineage 2 strain that probably originatedin Kenya carried a chromosomally locatedblaCTX-M-15, demonstrating the continual evolution of this sequence type inAfrica in response to widespread antibiotic usage.Conclusions:The discovery of ST313 isolates responsible for gastroenteritis in the UK reveals new diversity in thisimportant sequence type. This study highlights thepower of routine WGS by public health agencies to makeepidemiologically significant deductions that would be missed by conventional microbiological methods. Wespeculate that the niche specialisation of sub-Saharan African ST313 lineages is driven in part by the acquisitionof accessory genome elements

    Presence of phage-plasmids in multiple serovars of Salmonella enterica

    Get PDF
    Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a blaCTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing

    Predicted norovirus resurgence in 2021-2022 due to the relaxation of nonpharmaceutical interventions associated with COVID-19 restrictions in England: a mathematical modeling study.

    Get PDF
    BACKGROUND: To reduce the coronavirus disease burden in England, along with many other countries, the government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. METHODS: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020-2021. RESULTS: We report that susceptibility to norovirus infection has likely increased between March 2020 and mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels, the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels, there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. CONCLUSIONS: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced

    Emergence of phylogenetically diverse and fluoroquinolone resistant Salmonella Enteritidis as a cause of invasive nontyphoidal Salmonella disease in Ghana.

    Get PDF
    BACKGROUND: Salmonella enterica serovar Enteritidis is a cause of both poultry- and egg-associated enterocolitis globally and bloodstream-invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa (sSA). Distinct, multi-drug resistant genotypes associated with iNTS disease in sSA have recently been described, often requiring treatment with fluoroquinolone antibiotics. In industrialised countries, antimicrobial use in poultry production has led to frequent fluoroquinolone resistance amongst globally prevalent enterocolitis-associated lineages. METHODOLOGY/PRINCIPAL FINDINGS: Twenty seven S. Enteritidis isolates from patients with iNTS disease and two poultry isolates, collected between 2007 and 2015 in the Ashanti region of Ghana, were whole-genome sequenced. These isolates, notable for a high rate of diminished ciprofloxacin susceptibility (DCS), were placed in the phyletic context of 1,067 sequences from the Public Health England (PHE) S. Enteritidis genome database to understand whether DCS was associated with African or globally-circulating clades of S. Enteritidis. Analysis showed four of the major S. Enteritidis clades were represented, two global and two African. All thirteen DCS isolates, containing a single gyrA mutation at codon 87, belonged to a global PT4-like clade responsible for epidemics of poultry-associated enterocolitis. Apart from two DCS isolates, which clustered with PHE isolates associated with travel to Spain and Brazil, the remaining DCS isolates, including one poultry isolate, belonged to two monophyletic clusters in which gyrA 87 mutations appear to have developed within the region. CONCLUSIONS/SIGNIFICANCE: Extensive phylogenetic diversity is evident amongst iNTS disease-associated S. Enteritidis in Ghana. Antimicrobial resistance profiles differed by clade, highlighting the challenges of devising empirical sepsis guidelines. The detection of fluoroquinolone resistance in phyletically-related poultry and human isolates is of major concern and surveillance and control measures within the region's burgeoning poultry industry are required to protect a human population at high risk of iNTS disease

    Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    Get PDF
    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships

    Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide

    Get PDF
    The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. It regulates genes important for growth under these conditions, as well as additional genes important for virulence in many gram-negative pathogens. PhoQ is a sensor kinase that phosphorylates and activates the transcription factor PhoP. Since feedback inhibition is a common theme in stress-response circuits, we hypothesized that some members of the PhoP regulon may play such a role in the PhoQ/PhoP pathway. We therefore screened for PhoP-regulated genes that mediate feedback in this system. We found that deletion of mgrB (yobG), which encodes a 47 amino acid peptide, results in a potent increase in PhoP-regulated transcription. In addition, over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. We further show that MgrB homologs from Salmonella typhimurium and Yersinia pestis also repress PhoP-regulated transcription in these organisms. In cell regulatory circuits, feedback has been associated with modulating the induction kinetics and/or the cell-to-cell variability in response to stimulus. Interestingly, we found that elimination of MgrB-mediated feedback did not have a significant effect on the kinetics of reporter protein production and did not decrease the variability in expression among cells. Our results indicate MgrB is a broadly conserved membrane peptide that is a critical mediator of negative feedback in the PhoQ/PhoP circuit. This new regulator may function as a point of control that integrates additional input signals to modulate the activity of this important signaling system

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology
    corecore