45 research outputs found

    Periderm invasion contributes to epithelial formation in the teleost pharynx

    Get PDF
    The gnathostome pharyngeal cavity functions in food transport and respiration. In amniotes the mouth and nares are the only channels allowing direct contact between internal and external epithelia. In teleost fish, gill slits arise through opening of endodermal pouches and connect the pharynx to the exterior. Using transgenic zebrafish lines, cell tracing, live imaging and different markers, we investigated if pharyngeal openings enable epithelial invasion and how this modifies the pharyngeal epithelium. We conclude that in zebrafish the pharyngeal endoderm becomes overlain by cells with a peridermal phenotype. In a wave starting from pouch 2, peridermal cells from the outer skin layer invade the successive pouches until halfway their depth. Here the peridermal cells connect to a population of cells inside the pharyngeal cavity that express periderm markers, yet do not invade from outside. The latter population expands along the midline from anterior to posterior until the esophagus-gut boundary. Together, our results show a novel role for the periderm as an internal epithelium becomes adapted to function as an external surface.AgĂȘncia financiadora Ghent University Research Fund - BOF24J2015001401 Cancer Prevention Research Institute of Texas - RR140077info:eu-repo/semantics/publishedVersio

    A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012

    Full text link
    We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright Îł\gamma-ray outburst detected by the {\it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F>100 MeV=5.2±0.4×10−6_{>100~\mathrm{MeV}} =5.2\pm0.4\times10^{-6} photons cm−2^{-2} s−1^{-1}. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the Îł\gamma-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful Îł\gamma-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight (Ξ∌\theta\sim1.2∘^{\circ}) during the ejection of the knot and the Îł\gamma-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of EVPAs, which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the Îł\gamma-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of near-infrared to ultraviolet photons is the probable mechanism for the Îł\gamma-ray production.Comment: Accepted for publication in The Astrophysical Journa

    Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-waveband Monitoring during Strong Gamma-ray Activity

    Full text link
    We present results from monitoring the multi-waveband flux, linear polarization, and parsec-scale structure of the quasar PKS 1510-089, concentrating on eight major gamma-ray flares that occurred during the interval 2009.0-2009.5. The gamma-ray peaks were essentially simultaneous with maxima at optical wavelengths, although the flux ratio of the two wavebands varied by an order of magnitude. The optical polarization vector rotated by 720 degrees during a 5-day period encompassing six of these flares. This culminated in a very bright, roughly 1 day, optical and gamma-ray flare as a bright knot of emission passed through the highest-intensity, stationary feature (the "core") seen in 43 GHz Very Long Baseline Array images. The knot continued to propagate down the jet at an apparent speed of 22c and emit strongly at gamma-ray energies as a months-long X-ray/radio outburst intensified. We interpret these events as the result of the knot following a spiral path through a mainly toroidal magnetic field pattern in the acceleration and collimation zone of the jet, after which it passes through a standing shock in the 43 GHz core and then continues downstream. In this picture, the rapid gamma-ray flares result from scattering of infrared seed photons from a relatively slow sheath of the jet as well as from optical synchrotron radiation in the faster spine. The 2006-2009.7 radio and X-ray flux variations are correlated at very high significance; we conclude that the X-rays are mainly from inverse Compton scattering of infrared seed photons by 20-40 MeV electrons.Comment: 10 pages of text + 5 figures, to be published in Astrophysical Journal Letters in 201

    Flaring Behavior of the Quasar 3C~454.3 across the Electromagnetic Spectrum

    Full text link
    We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors Γ>\Gamma>10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the RR-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and γ\gamma-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jet's acceleration and collimation zone.Comment: 57 pages, 23 figures, 8 tables (submitted to ApJ

    The June 2016 Optical and Gamma-Ray Outburst and Optical Micro-Variability of the Blazar 3C454.3

    Get PDF
    The quasar 3C454.3 underwent a uniquely-structured multi-frequency outburst in June 2016. The blazar was observed in the optical RR band by several ground-based telescopes in photometric and polarimetric modes, at Îł\gamma-ray frequencies by the \emph{Fermi}\ Large Area Telescope, and at 43 GHz with the Very Long Baseline Array. The maximum flux density was observed on 2016 June 24 at both optical and Îł\gamma-ray frequencies, reaching Soptmax=18.91±0.08S^\mathrm{max}_\mathrm{opt}=18.91\pm0.08 mJy and SÎłmax=22.20±0.18×10−6S_\gamma^\mathrm{max} =22.20\pm0.18\times10^{-6} ph cm−2^{-2} s−1^{-1}, respectively. The June 2016 outburst possessed a precipitous decay at both Îł\gamma-ray and optical frequencies, with the source decreasing in flux density by a factor of 4 over a 24-hour period in RR band. Intraday variability was observed throughout the outburst, with flux density changes between 1 and 5 mJy over the course of a night. The precipitous decay featured statistically significant quasi-periodic micro-variability oscillations with an amplitude of ∌2\sim 2-3%3\% about the mean trend and a characteristic period of 36 minutes. The optical degree of polarization jumped from ∌3%\sim3\% to nearly 20\% during the outburst, while the position angle varied by \sim120\degr. A knot was ejected from the 43 GHz core on 2016 Feb 25, moving at an apparent speed vapp=20.3c±0.8cv_\mathrm{app}=20.3c\pm0.8c. From the observed minimum timescale of variability τoptmin≈2\tau_\mathrm{opt}^\mathrm{min}\approx2 hr and derived Doppler factor ÎŽ=22.6\delta=22.6, we find a size of the emission region râ‰Č2.6×1015r\lesssim2.6\times10^{15} cm. If the quasi-periodic micro-variability oscillations are caused by periodic variations of the Doppler factor of emission from a turbulent vortex, we derive a rotational speed of the vortex ∌0.2c\sim0.2c.Comment: 19 pages, 13 figures, 3 tables, accepted to the Astrophysical Journal 2019 March

    Emission-line Variability during a Nonthermal Outburst in the Gamma-Ray Bright Quasar 1156+295

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present multi-epoch optical spectra of the Îł-ray bright blazar 1156+295 (4C +29.45, Ton 599) obtained with the 4.3 m Lowell Discovery Telescope. During a multiwavelength outburst in late 2017, when the Îł-ray flux increased to 2.5 × 10−6 phot cm−2 s−1 and the quasar was first detected at energies ≄100 GeV, the flux of the Mg ii λ2798 emission line changed, as did that of the Fe emission complex at shorter wavelengths. These emission-line fluxes increased along with the highly polarized optical continuum flux, which is presumably synchrotron radiation from the relativistic jet, with a relative time delay of â‰Č2 weeks. This implies that the line-emitting clouds lie near the jet, which points almost directly toward the line of sight. The emission-line radiation from such clouds, which are located outside the canonical accretion-disk related broad-line region, may be a primary source of seed photons that are up-scattered to Îł-ray energies by relativistic electrons in the jet. © 2022. The Author(s). Published by the American Astronomical Society.This research was supported in part by NASA Fermi guest investigator program grants 80NSSC19K1504 and 80NSSC20K1565. We thank A. Tchekhovskoy for discussion of possible origins of the variable line-emitting clouds. These results made use of the Lowell Discovery Telescope (LDT) at Lowell Observatory. Lowell Observatory is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy, and operates the LDT in partnership with Boston University, the University of Maryland, the University of Toledo, Northern Arizona University and Yale University. This study was based in part on observations conducted using the 1.8 m Perkins Telescope Observatory (PTO) in Arizona, which is owned and operated by Boston University. I.A. acknowledges financial support from the Spanish "Ministerio de Ciencia e InnovaciĂłn" (MCINN) through the "Center of Excellence Severo Ochoa" award for the Instituto de AstrofĂ­sica de AndalucĂ­a-CSIC (SEV-2017-0709). Acquisition and reduction of the MAPCAT data were supported in part by MICINN through grants AYA2016-80889-P and PID2019-107847RB-C44. The MAPCAT observations were carried out at the German-Spanish Calar Alto Observatory, which is jointly operated by Junta de AndalucĂ­a and Consejo Superior de Investigaciones CientĂ­ficas. Data from the Steward Observatory spectropolarimetric monitoring project were used; this program was supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G. C.C. acknowledges support from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program under the grant agreement No. 771282.Peer reviewe

    Polarized blazar X-rays imply particle acceleration in shocks

    Get PDF
    Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock

    X-ray Polarization Observations of BL Lacertae

    Get PDF
    Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus the Synchrotron emission to be responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae performed with the Imaging X-ray Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization degree ΠX<\Pi_X<12.6\% was found in the 2-8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ
    corecore