80 research outputs found

    Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Rev. 3, 041303 (2016) and may be found at https://doi.org/10.1063/1.4963919.The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade

    Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification

    Get PDF
    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications

    Recent progress in tetravalent terbium chemistry

    No full text
    International audienc

    Characterisation of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, Type II/I kerogen

    No full text
    The kerogen of a sample of Estonian Kukersite (Ordovician) was examined by spectroscopic (solid state 13C NMR, FTIR) and pyrolytic ('off-line', flash) methods. This revealed an important contribution of long, linear alkyl chains in Kukersite kerogen. The hydrocarbons formed upon pyrolysis are dominated by n-alkanes and n-alk-1-enes and probably reflect a major contribution of selectivity preserved, highly aliphatic, resistant biomacromolecules from the outer cell walls of Gloeocapsomorpha prisca. This is consistent with the abundant presence of this fossilized organism in Kukersite kerogen. In addition high amounts of phenolic compounds were identified in the pyrolysates. Series of non-methylated, mono-, di- and trimethylated 3-n-alkylphenols, 5-n-alkyl-1,3-benzenediols and n-alkylhydroxybenzofurans were identified. All series of phenolic compounds contain long (up to C19), linear alkyl side-chains. Kukersite kerogen is, therefore, an aliphatic type II/I kerogen, despite the abundance of free phenolic moieties. This study shows that phenol-derived moieties are not necessarily associated with higher plant-derived organic matter. The flash pyrolysate of Kukersite kerogen was also compared with that of the kerogen of the Guttenberg Oil Rock (Ordovician) which is also composed of accumulations of fossilized G. prisca. Similarities in the distributions of hydrocarbons and sulphur compounds were noted, especially for the C1 C6 alkylbenzene and alkylthiophene distributions. However, no phenolic compounds were detected in the flash pyrolysate of the Guttenberg kerogen. Possible explanations for the observed similarities and differences are discussed
    • …
    corecore