8,967 research outputs found

    Physical processes leading to surface inhomogeneities: the case of rotation

    Full text link
    In this lecture I discuss the bulk surface heterogeneity of rotating stars, namely gravity darkening. I especially detail the derivation of the omega-model of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in early-type stars. I also discuss the problem of deriving gravity darkening in stars owning a convective envelope and in those that are members of a binary system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner and Rozelot edts V2: typos correcte

    Developmental and functional effects of steroid hormones on the neuroendocrine axis and spinal cord

    Get PDF
    This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.Fil: Zubeldia Brenner, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Roselli, C. E.. Oregon Health and Science University Portland; Estados UnidosFil: Recabarren, S. E.. Universidad de Concepción; ChileFil: Gonzalez Deniselle, Maria Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lara, H. E.. Universidad de Chile; Chil

    Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

    Full text link
    We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8K and magnetic fields below 5T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.Comment: 15 pages, 9 figure

    Sundarban mangroves: diversity, ecosystem services and climate change impacts

    Get PDF
    The Bengal delta coast harboring the famous Sundarban mangroves is extremely vulnerable to climate change. Already, salinity intrusion, increasing cyclones and anomalies in rainfall, and temperature, are causing many social and livelihood problems. However, our knowledge on the diversified climate change impacts on Sundarban ecosystems services, providing immense benefits, including foods, shelters, livelihood, and health amenities, is very limited. Therefore, this article has systematically reviewed the major functional aspects, and highlights on biodiversity, ecosystem dynamics, and services of the Sunderban mangroves, with respect to variations in climatic factors. The mangrove ecosystems are highly productive in terms of forest biomass, and nutrient contribution, especially through detritus-based food webs, to support rich biodiversity in the wetlands and adjacent estuaries. Sundarban mangroves also play vital role in atmospheric CO2 sequestration, sediment trapping and nutrient recycling. Sea level rise will engulf a huge portion of the mangroves, while the associated salinity increase is posing immense threats to biodiversity and economic losses. Climate-mediated changes in riverine discharge, tides, temperature, rainfall and evaporation will determine the wetland nutrient variations, influencing the physiological and ecological processes, thus biodiversity and productivity of Sundarban mangroves. Hydrological changes in wetland ecosystems through increased salinity and cyclones will lower the food security, and also induce human vulnerabilities to waterborne diseases. Scientific investigations producing high resolution data to identify Sundarban‟s multidimensional vulnerabilities to various climatic regimes are essential. Sustainable plans and actions are required integrating conservation and climate change adaptation strategies, including promotion of alternative livelihoods. Thus, interdisciplinary approaches are required to address the future climatic disasters, and better protection of invaluable ecosystem services of the Sunderban mangroves.Fil: Neogi, Sucharit Basu. Coastal Development Partnership; Bangladesh. Osaka Prefecture University; Japón. Leibniz Center for Tropical Marine Ecology GmbH; AlemaniaFil: Dey, Mouri. University of Chittagong; BangladeshFil: Lutful Kabir, S. M.. Bangladesh Agricultural University; BangladeshFil: Masum, Syed Jahangir H.. Coastal Development Partnership; BangladeshFil: Kopprio, Germán Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Leibniz Center for Tropical Marine Ecology GmbH; AlemaniaFil: Yamasaki, Shinji. Osaka Prefecture University; JapónFil: Lara, Ruben Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentin

    Substructure in the stellar halo near the Sun:I. Data-driven clustering in integrals-of-motion space

    Get PDF
    Aims: Develop a data-driven and statistically based method for finding such clumps in Integrals of Motion space for nearby halo stars and evaluating their significance robustly. Methods: We use data from Gaia EDR3 extended with radial velocities from ground-based spectroscopic surveys to construct a sample of halo stars within 2.5 kpc from the Sun. We apply a hierarchical clustering method that uses the single linkage algorithm in a 3D space defined by the commonly used integrals of motion energy EE, together with two components of the angular momentum, LzL_z and LL_\perp. To evaluate the statistical significance of the clusters found, we compare the density within an ellipsoidal region centered on the cluster to that of random sets with similar global dynamical properties. We pick out the signal at the location of their maximum statistical significance in the hierarchical tree. We estimate the proximity of a star to the cluster center using the Mahalanobis distance. We also apply the HDBSCAN clustering algorithm in velocity space. Results: Our procedure identifies 67 highly significant clusters (>3σ > 3\sigma), containing 12\% of the sources in our halo set, and in total 232 subgroups or individual streams in velocity space. In total, 13.8\% of the stars in our data set can be confidently associated to a significant cluster based on their Mahalanobis distance. Inspection of our data set reveals a complex web of relationships between the significant clusters, suggesting that they can be tentatively grouped into at least 6 main structures, many of which can be associated to previously identified halo substructures, and a number of independent substructures. This preliminary conclusion is further explored in an accompanying paper by Ruiz-Lara et al., where we also characterize the substructures in terms of their stellar populations. Conclusions: We find... (abridged version)Comment: 16 pages, 14 figures, 2 tables. Accepted for publication in A&A. This is the first in a series of papers, the second (Ruiz-Lara et al.) can be found in https://ui.adsabs.harvard.edu/abs/2022arXiv220102405R/abstract Code of the clustering algorithm can be found in https://github.com/SofieLovdal/IOM_clusterin
    corecore