9 research outputs found

    The Large ARtery Intracranial Occlusion Stroke Scale: A New Tool With High Accuracy in Predicting Large Vessel Occlusion

    Get PDF
    Objectives: The combination of systemic thrombolysis and mechanical thrombectomy is indicated in patients with ischemic stroke due to a large vessel occlusion (LVO) and these treatments are time-dependent. Rapid identification of patients with suspected LVO also in a prehospital setting could influence the choice of the destination hospital. Aim of this pilot study was to evaluate the predictive role of a new stroke scale for LVO, comparing it to other scores.Patients and Methods: All consecutive patients admitted to our comprehensive stroke center with suspected ischemic stroke were studied with a CT angiography and 5 different stroke scales were applied. The Large ARtery Occlusion (LARIO) stroke scale consists of 5 items including the assessment of facial palsy, language alteration, grip and arm weakness, and the presence of neglect. A Receiving Operating Characteristic curve was evaluated for each stroke scale to explore the level of accuracy in LVO prediction.Results: A total of 145 patients were included in the analysis. LVO was detected in 37.2% of patients. The Area Under Curve of the LARIO score was 0.951 (95%CI: 0.902–0.980), similar to NIHSS and higher than other scales. The cut-off score for best performance of the LARIO stroke scale was higher than 3 (positive predictive value: 77% and negative predictive value: 100%).Conclusion: The LARIO stroke scale is a simple tool, showing high accuracy in detecting LVO, even if with some limitations due to some false positive cases. Its efficacy has to be confirmed in a pre-hospital setting and other centers

    Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images

    Get PDF
    Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the FullWidth-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges

    Future-ai:International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

    Get PDF
    Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI

    FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

    Full text link
    Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI

    RADStation3G: A platform for cardiovascular image analysis integrating PACS, 3D+t visualization and grid computing

    No full text
    RADStation3G is a software platform for cardiovascular image analysis and surgery planning. It provides image visualization and management in 2D, 3D and 3D+. t; data storage (images or operational results) in a PACS (using DICOM); and exploitation of patients' data such as images and pathologies. Further, it provides support for computationally expensive processes with grid technology. In this article we first introduce the platform and present a comparison with existing systems, according to the platform's modules (for cardiology, angiology, PACS archived enriched searching and grid computing), and then RADStation3G is described in detail.</p
    corecore