151 research outputs found

    An investigation of the role of Arabidopsis thaliana plant natriuretic peptide in planta

    Get PDF
    The sessile nature of plants demands that they respond appropriately to changes in their environment (stresses) in order to survive. Critical to survival is the maintenance of water and ion homeostasis. The mechanisms by which plants achieve this are poorly understood. Traditionally plant stress responses were thought to be communicated by five classical plant hormones - auxin, cytokine, gibberellic acid, absisic acid and ethylene. Nowadays a plethora of other molecules are known to fulfil this function including nitric oxide, salicylic acid, jasmonic acid, brassinosteroids and peptide hormones. Plant natriuretic peptides have been proposed to be peptide hormones involved in maintaining water and ion homeostasis in plants. Evidence for this has been provided by studies of plant responses to exogenous natriuretic peptide treatment, however a demonstration of their function in planta remains outstanding. This study was undertaken to gain insight into the mechanisms regulating water and ion homeostasis in Arabdopsis by examining second messenger responses to stresses that perturb water and ion homeostasis; characterization of an Arabidopsis thaliana plant natriuretic peptide (atpnp-a) mutant and transcriptome analysis of AtPNP-A, in order to establish whether AtPNP-A plays a role in maintaining water and ion homeostasis in planta. Results indicated that recombinant AtPNP-A induces second messenger responses reminiscent of the response to NaCl, suggesting that AtPNP-A may play a signalling role in response to disturbances in water and ion homeostasis. In support of this, characterization of an atpnp-a mutant revealed that AtPNP-A is likely to be involved in processes that require adjustments to water and ion homeostasis including cell expansion, stomatal opening and NaCl and osmotic stress responses, consistent with reported responses to natriuretic peptide treatment. Furthermore, the atpnp-a mutant revealed a role for AtPNP-A in the defence response. Evidence to support this came from the computational analysis of AtPNP-A expression which correlates with genes involved in the defence response. Additionally, the transcriptome response to recombinant AtPNP-A treatment further implicated the involvement of AtPNP-A in the defence response. Therefore AtPNP-A is hypothesized to play a role in growth, abiotic and biotic stress responses that enables the plant to mount an integrated response to the environment

    Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant natriuretic peptides (PNPs) are a class of systemically mobile molecules distantly related to expansins. While several physiological responses to PNPs have been reported, their biological role has remained elusive. Here we use a combination of expression correlation analysis, meta-analysis of gene expression profiles in response to specific stimuli and in selected mutants, and promoter content analysis to infer the biological role of the <it>Arabidopsis thaliana </it>PNP, AtPNP-A.</p> <p>Results</p> <p>A gene ontology analysis of <it>AtPNP-A </it>and the 25 most expression correlated genes revealed a significant over representation of genes annotated as part of the systemic acquired resistance (SAR) pathway. Transcription of these genes is strongly induced in response to salicylic acid (SA) and its functional synthetic analogue benzothiadiazole S-methylester (BTH), a number of biotic and abiotic stresses including many SA-mediated SAR-inducing conditions, as well as in the constitutive SAR expressing mutants <it>cpr5 </it>and <it>mpk4 </it>which have elevated SA levels. Furthermore, the expression of <it>AtPNP-A </it>was determined to be significantly correlated with the SAR annotated transcription factor, <it>WRKY 70</it>, and the promoters of <it>AtPNP-A </it>and the correlated genes contain an enrichment in the core WRKY binding W-box <it>cis</it>-elements. In constitutively expressing <it>WRKY 70 </it>lines the expression of <it>AtPNP-A </it>and the correlated genes, including the SAR marker genes, <it>PR-2 </it>and <it>PR-5</it>, were determined to be strongly induced.</p> <p>Conclusion</p> <p>The co-expression analyses, both in wild type and mutants, provides compelling evidence that suggests <it>AtPNP-A </it>may function as a component of plant defence responses and SAR in particular. The presented evidence also suggests that the expression of <it>AtPNP-A </it>is controlled by WRKY transcription factors and WRKY 70 in particular. <it>AtPNP-A </it>shares many characteristics with PR proteins in that its transcription is strongly induced in response to pathogen challenges, it contains an N-terminal signalling peptide and is secreted into the extracellular space and along with PR-1, PR-2 and PR-5 proteins it has been isolated from the Arabidopsis apoplast. Based on these findings we suggest that <it>AtPNP-A </it>could be classified as a newly identified PR protein.</p

    The arabidopsis cyclic nucleotide interactome

    Get PDF
    Background: Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotidedependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods: An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results: A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions: We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response

    Systematic review of mobile health behavioural interventions to improve uptake of HIV testing for vulnerable and key populations

    Get PDF
    This systematic narrative review examined the empirical evidence on the effectiveness of mobile health (mHealth) behavioral interventions designed to increase uptake of HIV testing among vulnerable and key populations

    The Arabidopsis Wall Associated Kinase-Like 10 Gene Encodes a Functional Guanylyl Cyclase and Is Co-Expressed with Pathogen Defense Related Genes

    Get PDF
    Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3′,5′-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. is consistently co-expressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors.We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP

    Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure

    Get PDF
    We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kahler cone substructure on manifolds with h^{1,1}>1. Since the computation depends only on a one-dimensional ray in the Kahler moduli space, it can probe slope-stability regardless of the size of h^{1,1}. Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kahler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, an efficient numerical check is proposed for determining whether or not a vector bundle is slope-stable without computing its full connection.Comment: 38 pages, 10 figure

    Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories

    Get PDF
    A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in version 2

    Stability Walls in Heterotic Theories

    Full text link
    We study the sub-structure of the heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of the Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region. Our results provide a low-energy description of supersymmetry breaking by internal gauge fields as well as a physical picture for the mathematical notion of bundle stability. Specifically, we find that at the transition between the two regions an additional anomalous U(1) symmetry appears under which some of the states in the low-energy theory acquire charges. We compute the associated D-term contribution to the four-dimensional potential which contains a Kahler-moduli dependent Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term correctly reproduces the expected physics. Several mathematical conclusions concerning vector bundle stability are drawn from our arguments. We also discuss possible physical applications of our results to heterotic model building and moduli stabilization.Comment: 37 pages, 4 figure

    Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts

    Get PDF
    Background. Despite the demonstration that geminiviruses, like many other single stranded DNA viruses, are evolving at rates similar to those of RNA viruses, a recent study has suggested that grass-infecting species in the genus Mastrevirus may have co-diverged with their hosts over millions of years. This "co-divergence hypothesis" requires that long-term mastrevirus substitution rates be at least 100,000-fold lower than their basal mutation rates and 10,000-fold lower than their observable short-term substitution rates. The credibility of this hypothesis, therefore, hinges on the testable claim that negative selection during mastrevirus evolution is so potent that it effectively purges 99.999% of all mutations that occur. Results. We have conducted long-term evolution experiments lasting between 6 and 32 years, where we have determined substitution rates of between 2 and 3 × 10 -4substitutions/site/year for the mastreviruses Maize streak virus (MSV) and Sugarcane streak Réunion virus (SSRV). We further show that mutation biases are similar for different geminivirus genera, suggesting that mutational processes that drive high basal mutation rates are conserved across the family. Rather than displaying signs of extremely severe negative selection as implied by the co-divergence hypothesis, our evolution experiments indicate that MSV and SSRV are predominantly evolving under neutral genetic drift. Conclusion. The absence of strong negative selection signals within our evolution experiments and the uniformly high geminivirus substitution rates that we and others have reported suggest that mastreviruses cannot have co-diverged with their hosts. © 2009 Harkins et al; licensee BioMed Central Ltd

    Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua

    Full text link
    In this paper, we show that the presence of gauge fields in heterotic Calabi-Yau compacitifications causes the stabilisation of some, or all, of the complex structure moduli of the Calabi-Yau manifold while maintaining a Minkowski vacuum. Certain deformations of the Calabi-Yau complex structure, with all other moduli held fixed, can lead to the gauge bundle becoming non-holomorphic and, hence, non-supersymmetric. This leads to an F-term potential which stabilizes the corresponding complex structure moduli. We use 10- and 4-dimensional field theory arguments as well as a derivation based purely on algebraic geometry to show that this picture is indeed correct. An explicit example is presented in which a large subset of complex structure moduli is fixed. We demonstrate that this type of theory can serve as the hidden sector in heterotic vacua and can co-exist with realistic particle physics.Comment: 17 pages, Late
    corecore