122 research outputs found

    Prospective research on infants with mild encephalopathy: the PRIME study.

    Get PDF
    OBJECTIVE: To determine short-term outcomes of infants with evidence of hypoxia-ischemia at birth and classified as mild neonatal encephalopathy (NE) at <6 h of age. STUDY DESIGN: Prospective multicenter study. Mild NE was defined as ⩾1 abnormal category in modified Sarnat score. Primary outcome was any abnormality on early amplitude integrated electroencephalogram (aEEG) or seizures, abnormal brain magnetic resonance imaging (MRI) or neurological exam at discharge. RESULTS: A total of 54/63 (86%) of enrolled infants had data on components of the primary outcome, which was abnormal in 28/54 (52%): discontinuous aEEG (n=4), MRI (n=9) and discharge exam (n=22). Abnormal tone and/or incomplete Moro were the most common findings. MRI abnormalities were confined to cerebral cortex but two infants had basal ganglia and/or thalamus involvement. The 18 to 24 months follow-up is ongoing. CONCLUSIONS: A larger than expected proportion of mild NE infants with abnormal outcomes was observed. Future research should evaluate safety and efficacy of neuroprotection for mild NE.Journal of Perinatology advance online publication, 2 November 2017; doi:10.1038/jp.2017.164

    Therapeutic hypothermia translates from ancient history in to practice

    Get PDF
    Acute postasphyxial encephalopathy around the time of birth remains a major cause of death and disability. The possibility that hypothermia may be able to prevent or lessen asphyxial brain injury is a “dream revisited”. In this review, a historical perspective is provided from the first reported use of therapeutic hypothermia for brain injuries in antiquity, to the present day. The first uncontrolled trials of cooling for resuscitation were reported more than 50 y ago. The seminal insight that led to the modern revival of studies of neuroprotection was that after profound asphyxia, many brain cells show initial recovery from the insult during a short “latent” phase, typically lasting ~6 h, only to die hours to days later during a “secondary” deterioration phase characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this conceptual framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration, and continued for a sufficient duration to allow the secondary deterioration to resolve, is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild induced hypothermia significantly improves intact survival and neurodevelopmental outcomes to midchildhood

    A systematic review of cooling for neuroprotection in neonates with hypoxic ischemic encephalopathy – are we there yet?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to systematically review randomized trials assessing therapeutic hypothermia as a treatment for term neonates with hypoxic ischemic encephalopathy.</p> <p>Methods</p> <p>The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL databases, reference lists of identified studies, and proceedings of the Pediatric Academic Societies were searched in July 2006. Randomized trials assessing the effect of therapeutic hypothermia by either selective head cooling or whole body cooling in term neonates were eligible for inclusion in the meta-analysis. The primary outcome was death or neurodevelopmental disability at ≥ 18 months.</p> <p>Results</p> <p>Five trials involving 552 neonates were included in the analysis. Cooling techniques and the definition and severity of neurodevelopmental disability differed between studies. Overall, there is evidence of a significant effect of therapeutic hypothermia on the primary composite outcome of death or disability (RR: 0.78, 95% CI: 0.66, 0.92, NNT: 8, 95% CI: 5, 20) as well as on the single outcomes of mortality (RR: 0.75, 95% CI: 0.59, 0.96) and neurodevelopmental disability at 18 to 22 months (RR: 0.72, 95% CI: 0.53, 0.98). Adverse effects include benign sinus bradycardia (RR: 7.42, 95% CI: 2.52, 21.87) and thrombocytopenia (RR: 1.47, 95% CI: 1.07, 2.03, NNH: 8) without deleterious consequences.</p> <p>Conclusion</p> <p>In general, therapeutic hypothermia seems to have a beneficial effect on the outcome of term neonates with moderate to severe hypoxic ischemic encephalopathy. Despite the methodological differences between trials, wide confidence intervals, and the lack of follow-up data beyond the second year of life, the consistency of the results is encouraging. Further research is necessary to minimize the uncertainty regarding efficacy and safety of any specific technique of cooling for any specific population.</p

    Improving manual oxygen titration in preterm infants by training and guideline implementation

    Get PDF
    To study oxygen saturation (SpO2) targeting before and after training and guideline implementation of manual oxygen titration, two cohorts of preterm infants 21%. ABCs where oxygen therapy was given were identified and analyzed. After training and guideline implementation the %SpO2-wtr increased (median interquartile range (IQR)) 48.0 (19.6-63.9) % vs 61.9 (48.5-72.3) %; p 95% (44.0 (27.8-66.2) % vs 30.8 (22.6-44.5) %; p 95% did not decrease (73% vs 64%; ns) but lasted shorter (2 (0-7) vs 1 (1-3) minute; p < 0.004). CONCLUSION: Training and guideline implementation in manual oxygen titration improved SpO2 targeting in preterm infants with more time spent within the target range and less frequent hyperoxaemia. The durations of hypoxaemia and hyperoxaemia during ABCs were shorter. What is Known: • Oxygen saturation targeting in preterm infants can be challenging and the compliance is low when oxygen is titrated manually. • Hyperoxaemia often occurs after oxygen therapy for oxygen desaturation during apnoeas. What is New: • Training and implementing guidelines improved oxygen saturation targeting and reduced hyperoxaemia. • Training and implementing guidelines improved manual oxygen titration during ABC

    The speed of increasing milk feeds: a randomised controlled trial

    Get PDF
    BACKGROUND In the UK, 1-2% of infants are born very preterm (<32 weeks of gestation) or have very low birth weight (<1500 g). Very preterm infants are initially unable to be fed nutritional volumes of milk and therefore require intravenous nutrition. Milk feeding strategies influence several long and short term health outcomes including growth, survival, infection (associated with intravenous nutrition) and necrotising enterocolitis (NEC); with both infection and NEC being key predictive factors of long term disability. Currently there is no consistent strategy for feeding preterm infants across the UK. The SIFT trial will test two speeds of increasing milk feeds with the primary aim of determining effects on survival without moderate or severe neurodevelopmental disability at 24 months of age, corrected for prematurity. The trial will also examine many secondary outcomes including infection, NEC, time taken to reach full feeds and growth. METHODS/DESIGN Two thousand eight hundred very preterm or very low birth weight infants will be recruited from approximately 30 hospitals across the UK to a randomised controlled trial. Infants with severe congenital anomaly or no realistic chance of survival will be excluded. Infants will be randomly allocated to either a faster (30 ml/kg/day) or slower (18 ml/kg/day) rate of increase in milk feeds. Data will be collected during the neonatal hospital stay on weight, infection rates, episodes of NEC, length of stay and time to reach full milk feeds. Long term health outcomes comprising vision, hearing, motor and cognitive impairment will be assessed at 24 months of age (corrected for prematurity) using a parent report questionnaire. DISCUSSION Extensive searches have found no active or proposed studies investigating the rate of increasing milk feeds. The results of this trial will have importance for optimising incremental milk feeding for very preterm and/or very low birth weight infants. No additional resources will be required to implement an optimal feeding strategy, and therefore if successful, the trial results could rapidly be adopted across the NHS at low cost. TRIAL REGISTRATION ISRCTN Registry; ISRCTN76463425 on 5 March, 2013

    Comprehensive Brain MRI Segmentation in High Risk Preterm Newborns

    Get PDF
    Most extremely preterm newborns exhibit cerebral atrophy/growth disturbances and white matter signal abnormalities on MRI at term-equivalent age. MRI brain volumes could serve as biomarkers for evaluating the effects of neonatal intensive care and predicting neurodevelopmental outcomes. This requires detailed, accurate, and reliable brain MRI segmentation methods. We describe our efforts to develop such methods in high risk newborns using a combination of manual and automated segmentation tools. After intensive efforts to accurately define structural boundaries, two trained raters independently performed manual segmentation of nine subcortical structures using axial T2-weighted MRI scans from 20 randomly selected extremely preterm infants. All scans were re-segmented by both raters to assess reliability. High intra-rater reliability was achieved, as assessed by repeatability and intra-class correlation coefficients (ICC range: 0.97 to 0.99) for all manually segmented regions. Inter-rater reliability was slightly lower (ICC range: 0.93 to 0.99). A semi-automated segmentation approach was developed that combined the parametric strengths of the Hidden Markov Random Field Expectation Maximization algorithm with non-parametric Parzen window classifier resulting in accurate white matter, gray matter, and CSF segmentation. Final manual correction of misclassification errors improved accuracy (similarity index range: 0.87 to 0.89) and facilitated objective quantification of white matter signal abnormalities. The semi-automated and manual methods were seamlessly integrated to generate full brain segmentation within two hours. This comprehensive approach can facilitate the evaluation of large cohorts to rigorously evaluate the utility of regional brain volumes as biomarkers of neonatal care and surrogate endpoints for neurodevelopmental outcomes

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity
    corecore