368 research outputs found

    Proton hot spots and exclusive vector meson production

    Get PDF
    We explore consequences of the existence of gluonic hot spots inside the proton for coherent and incoherent exclusive vector meson production cross sections in deep inelastic scattering. By working in the dilute limit of the Color Glass Condensate framework to compute the cross sections for Gaussian hot spots of fluctuating color charges and employing a nonrelativistic vector meson wave function, we are able to perform large parts of the calculation analytically. We find that the coherent cross section is sensitive to both the size of the target and the structure of the probe. The incoherent cross section is dominated by color fluctuations at small transverse momentum transfer (t), by proton and hot spot sizes as well as the structure of the probe at medium t and again by color fluctuations at large t. While the t-dependence of the cross section is well reproduced in our model, the relative normalization between the coherent and the incoherent cross sections points to the need for additional fluctuations in the proton.Peer reviewe

    Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis

    Get PDF
    BACKGROUND: Human mature oocytes are very susceptible to cryodamage. Several reports demonstrated that vitrification might preserve oocyte better than slow freezing. However, this is still controversial. Thus, larger clinical, biological and experimental trials to confirm this concept are necessary. The aim of the study was to evaluate and compare fine morphological features in human mature oocytes cryopreserved with either slow freezing or vitrification. METHODS: We used 47 supernumerary human mature (metaphase II) oocytes donated by consenting patients, aged 27-32 years, enrolled in an IVF program. Thirtyfive oocytes were cryopreserved using slow freezing with 1.5 M propanediol +0.2 M sucrose concentration (20 oocytes) or a closed vitrification system (CryoTip Irvine Scientific CA) (15 oocytes). Twelve fresh oocytes were used as controls. All samples were prepared for light and transmission electron microscopy evaluation. RESULTS: Control, slow frozen/thawed and vitrified/warmed oocytes (CO, SFO and VO, respectively) were rounded, 90-100 mum in diameter, with normal ooplasm showing uniform distribution of organelles. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and small mitochondria-vesicle (MV) complexes were the most numerous structures found in all CO, SFO and VO cultured for 3-4 hours. M-SER aggregates decreased, and large MV complexes increased in those SFO and VO maintained in culture for a prolonged period of time (8-9 hours). A slight to moderate vacuolization was present in the cytoplasm of SFO. Only a slight vacuolization was present in VO, whereas vacuoles were almost completely absent in CO. Amount and density of cortical granules (CG) appeared abnormally reduced in SFO and VO, irrespective of the protocol applied. CONCLUSIONS: Even though, both slow freezing and vitrification ensured a good overall preservation of the oocyte, we found that: 1) prolonged culture activates an intracellular membrane "recycling" that causes the abnormal transformation of the membranes of the small MV complexes and of SER into larger rounded vesicles; 2) vacuolization appears as a recurrent form of cell damage during slow freezing and, at a lesser extent, during vitrification using a closed device; 3) premature CG exocytosis was present in both SFO and VO and may cause zona pellucida hardenin

    An analytic study towards instabilities of the glasma

    Full text link
    Strong longitudinal color flux fields will be created in the initial stage of high-energy nuclear collisions. We investigate analytically time evolution of such boost-invariant color fields from Abelian-like initial conditions, and next examine stability of the boost-invariant configurations against rapidity dependent fluctuations. We find that the magnetic background field has an instability induced by the lowest Landau level whose amplitude grows exponentially. For the electric background field there is no apparent instability although pair creations due to the Schwinger mechanism should be involved.Comment: 4p, 3figs; poster contribution to QM200

    Spectral function of fermions in a highly occupied non-Abelian plasma

    Get PDF
    We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge theory with high occupation numbers of gauge fields. After recovering the free field case, we extract the spectral function of fermions in a highly occupied non-Abelian plasma close to its non-thermal fixed point, i.e., in a self-similar regime of the non-equilibrium dynamics. We find good agreement with hard loop perturbation theory for medium-induced masses, dispersion relations and quasiparticle residues. We also extract the full momentum dependence of the damping rate of the collective excitations. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).Peer reviewe

    Non-perturbative computation of double inclusive gluon production in the Glasma

    Full text link
    The near-side ridge observed in A+A collisions at RHIC has been described as arising from the radial flow of Glasma flux tubes formed at very early times in the collisions. We investigate the viability of this scenario by performing a non-perturbative numerical computation of double inclusive gluon production in the Glasma. Our results support the conjecture that the range of transverse color screening of correlations determining the size of the flux tubes is a semi-hard scale, albeit with non-trivial structure. We discuss our results in the context of ridge correlations in the RHIC heavy ion experiments.Comment: 25 pages, 11 figures, uses JHEP3.cls V2: small clarifications, published in JHE

    Scalable communication for high-order stencil computations using CUDA-aware MPI

    Full text link
    Modern compute nodes in high-performance computing provide a tremendous level of parallelism and processing power. However, as arithmetic performance has been observed to increase at a faster rate relative to memory and network bandwidths, optimizing data movement has become critical for achieving strong scaling in many communication-heavy applications. This performance gap has been further accentuated with the introduction of graphics processing units, which can provide by multiple factors higher throughput in data-parallel tasks than central processing units. In this work, we explore the computational aspects of iterative stencil loops and implement a generic communication scheme using CUDA-aware MPI, which we use to accelerate magnetohydrodynamics simulations based on high-order finite differences and third-order Runge-Kutta integration. We put particular focus on improving intra-node locality of workloads. In comparison to a theoretical performance model, our implementation exhibits strong scaling from one to 6464 devices at 50%50\%--87%87\% efficiency in sixth-order stencil computations when the problem domain consists of 2563256^3--102431024^3 cells.Comment: 17 pages, 15 figure

    On multiplicity correlations in the STAR data

    Full text link
    The STAR data on the multiplicity correlations between narrow psudorapidity bins in the pp and AuAu collisions are discussed. The PYTHIA 8.145 generator is used for the pp data, and a naive superposition model is presented for the AuAu data. It is shown that the PYTHIA generator with default parameter values describes the pp data reasonably well, whereas the superposition model fails to reproduce the centrality dependence seen in the data. Some possible reasons for this failure and a comparison with other models are presented.Comment: 8 pages, 3 figure

    Initial State: Theory Status

    Full text link
    I present a brief discussion of the different approaches to the study initial state effects in heavy ion collisions in view of the recent results from Pb+Pb and p+p collisions at the LHC.Comment: 8 pages, 6 figures. Contribution to the proceedings of the XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, QM2011. Annecy, France, 22-28 May 201

    Tracing the origin of azimuthal gluon correlations in the color glass condensate

    Get PDF
    We examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v(n), within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. We will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlations can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.Peer reviewe

    Heavy-Quark Diffusion, Flow and Recombination at RHIC

    Full text link
    We discuss recent developments in assessing heavy-quark interaction in the Quark-Gluon Plasma (QGP). While induced gluon radiation is expected to be the main energy-loss mechanism for fast-moving quarks, we focus on elastic scattering which prevails toward lower energies, evaluating both perturbative (gluon-exchange) and nonperturbative (resonance formation) interactions in the QGP. The latter are treated within an effective model for D- and B-meson resonances above T_c as motivated by current QCD lattice calculations. Pertinent diffusion and drag constants, following from a Fokker-Planck equation, are implemented into an expanding fireball model for Au-Au collisions at RHIC using relativistic Langevin simulations. Heavy quarks are hadronized in a combined fragmentation and coalescence framework, and resulting electron-decay spectra are compared to recent RHIC data. A reasonable description of both nuclear suppression factors and elliptic flow up to momenta of ~5 GeV supports the notion of a strongly interacting QGP created at RHIC. Consequences and further tests of the proposed resonance interactions are discussed.Comment: 8 pages, 14 figures, contribution to the proceedings for the "International Conference on Strangeness in Quark Matter 2006
    • …
    corecore