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1 Introduction

Azimuthal anisotropies of multiparticle correlations observed in small systems such as those

produced in p+Pb, d+Au, or 3He+Au collisions have been computed in various theoretical

frameworks. Within different calculations these correlations are either dominantly due to

initial state parton correlations in the projectile and target [1–15] or from final state corre-

lations that are generated by the collective flow of matter produced in the collision [16–22].

Since both of these frameworks are able to describe key features of the data, disentangling

the different effects and understanding how correlations are generated in both approaches

is essential to obtain novel insight into the QCD dynamics of ultradense parton systems.

We will focus in this work on multiparticle correlations which are generated in the

initial state. We will discuss within the color glass condensate (CGC) effective theory of

high energy QCD [23] the origin of these correlations and we will critically examine the

assumptions underlying different calculations in this framework. Even though some of

the models may appear very different, their common features and their differences can be

understood systematically as approximations to the underlying QCD dynamics.

We will orient our discussion of initial state correlations within the “dilute-dense”

power counting in the CGC, where the incoming parton densities are assumed to be small in
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the projectile but large in the target nucleus. In this limit, analytical and numerical compu-

tations are comparatively simple and thus permit systematic comparisons between different

approximation schemes. We note however that the kinematic region where the strongest

azimuthal correlations are seen in experiments correspond more to a “dense-dense” situa-

tion as the parton densities are also large in the incoming projectile. A systematic power

counting then requires one to solve classical Yang-Mills equations in the presence of pro-

jectile and target color sources, which has only been achieved numerically [14, 24]. While

there are important qualitative differences between dense-dense and dilute-dense systems,

we believe that the lessons inferred from analytical and numerical studies the dilute-dense

case can nevertheless be valuable for the discussion of the phenomenologically more relevant

dense-dense collision systems.

We will here compute the two particle correlation function for quarks scattering off a

large nucleus in the dilute-dense CGC description. The main ingredient of this computation

is the so-called “dipole-dipole” correlator of light-like Wilson lines and we will compute this

quantity in the following approximations: i) the Gaussian two gluon exchange (“Glasma

graph”) approximation [1–5, 25–29] and ii) the nonlinear Gaussian approximation [30–40].

We will determine the second, third, and fourth azimuthal Fourier coefficients of the two

particle correlation function within these two approximation schemes and compare the

results to numerical lattice simulations of the full correlator in the McLerran-Venugopalan

(MV) model [41–43] and after renormalization group (JIMWLK) evolution [44–47] of the

MV model initial conditions to higher rapidities [13]. We will further discuss how our

computations relate to the “color field domain model” introduced in [10, 11, 48, 49] based on

ideas developed in [6, 7]. Since many features of this model appear similar to those discussed

previously [1, 2, 4, 5], it is important to understand the interpretation and justification for

this model from first principles. We will demonstrate that the effects of the color field

domain model can be reproduced in the CGC effective theory if non-Gaussian correlations

are assumed to play an important role.

This paper is organized as follows. In the next section, we shall discuss the physical

picture of how initial state multiparticle correlations are generated and derive the leading

order expressions for single and double inclusive distributions. These can be expressed in

terms of correlators of lightlike Wilson lines, which we will calculate in section 3 within

the Glasma graph and nonlinear Gaussian approximations. We then compute the Fourier

moments vn of two particle correlations in both approximation schemes in section 4 and

compare our results with numerical lattice simulations of the full correlation function. In

section 5 the analytical and numerical results obtained are then compared to the color field

domain model. We first cast our analytical results in terms of color electric field correlators

and make a direct comparison with expressions for the same correlator in the color field

domain model. We will demonstrate that our results provide a clear interpretation of the

color field domain model which clarifies the discussion in the recent literature. We end

with a summary of the results of the paper and an outlook on further research directions

in computations of multiparton correlations in high energy QCD.
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Figure 1. (Color online) Color electric fields inside the nucleus fluctuate on an event by event basis.

2 Multiparticle correlations from fluctuating color fields

We begin our discussion of the physics of initial state correlations with the simplest possible

example of the high energy scattering of individual (uncorrelated) quarks off a large nucleus.

Our general picture is that each parton scatters independently off the color field of the

nucleus receiving a transverse momentum kick in the process. As noted previously [6, 7, 25],

the color fields fluctuate from event to event and are locally organized in domains of size

∼ 1/Qs as illustrated in figure 1. When two (or more) quarks scatter off the same domain,

they will receive a similar kick whenever they are in the same color state. This leads to

a correlation which is suppressed by 1/Nc
2 (in the limit of large Nc) and the number of

domains Q2
sS⊥, where S⊥ denotes the transverse area probed by the projectile. We will

now discuss this physical picture in in more detail and further develop its quantitative

implementation along the lines of the discussion in ref. [13].

2.1 Single quark scattering

Within the CGC formalism, the color fields inside the target nucleus are determined by

the solution of the classical Yang-Mills equations

[Dµ, F
µν ] = Jν , (2.1)

where the eikonal current Jµ is given in terms of the density of color charges ρ inside the

target nucleus as

Jµ(x, x+) = δµ−ρ(x, x+) . (2.2)

The solution to the classical Yang-Mills equations takes the well known form [50]

A−(x, x+) = −ρ(x, x+)

∇2
T

, (2.3)

where ∇2
T = ∂i∂i is the 2-dimensional Laplacian. The scattering of an incoming quark

inside the projectile can be described to leading order accuracy in αs by the solution of the

Dirac equation

(i /D −m)Ψ̂ = 0 , (2.4)

in the presence of the background field of the target in eq. (2.3). One finds that the

forward scattering amplitude of a quark with momentum p to scatter off the color fields
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in the target is given by1

〈out,q|in,p〉 =

∫
d2x V (x) ei(q−p)·x , (2.5)

where

V (x) = P exp

{
−ig

∫ ∞
−∞

dx+A−(x+,x)

}
(2.6)

denotes the Wilson line at a spatial position x in the fundamental representation.

Within the leading order dilute-dense framework, it is then straightforward to compute

the single inclusive distributions of quarks in a high energy projectile after scattering from

a nuclear target
dNq

d2p
= 〈out,p|ρ̂|out,p〉 , (2.7)

where ρ̂ is the reduced one particle density matrix in the probe. This general expression

can be rewritten explicitly as2

dNq

d2p
=

∫
d2b

∫
d2k

(2π)2
Wq(b,k)ϕ(b,p− k) . (2.8)

The Wigner function Wq(b,k) characterizes the transverse momentum and position distri-

bution of incoming quarks inside the projectile and is defined to be

Wq(b,k) =

∫
d2q

(2π)2

〈
in,k +

q

2

∣∣∣ ρ̂ ∣∣∣in,k− q

2

〉
e−iq·b . (2.9)

For the illustrative purpose of this paper, it is sufficient to choose a Gaussian form

Wq(b,k) =
1

π2
e−b

2/Be−k
2B , (2.10)

with a dimensionful constant B characterizing the transverse area of the projectile. The

dynamics of interest to us is given by the unintegrated gluon distribution of the target

nucleus

ϕ(b,k) =

∫
d2r D

(
b +

r

2
,b− r

2

)
eik·r , (2.11)

which represents the distribution of momentum transfers from the target that contribute

to the corresponding momentum distribution of the scattered quark. Here

D(x,y) = 〈D(x,y)〉 (2.12)

is the expectation value of the dipole operator

D(x,y) =
1

Nc
Tr
[
V (x)V † (y)

]
, (2.13)

1Since we are primarily interested in the transverse coordinate dependence, we have omitted a delta

function for longitudinal momentum conservation as well as the spin structure to lighten the notation. We

refer to [51] for the complete expression.
2Our expression generalizes the one given in [51] by replacing the collinear quark distribution with a

Wigner function Wq(b,k) that is a function of both the k of quarks in the projectile and their impact

parameter b. Equivalent expression for gluons, differing only by the representation of the Wilson lines,

have explicitly been derived in [31, 52].
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which results from the product of the forward scattering amplitude in eq. (2.5) and its com-

plex conjugate equivalent, to obtain the single inclusive probability [53–55]. Written fully

in coordinate space our expression for the single inclusive multiplicity (2.8) has the form

dNq

d2p
=

1

πB

1

(2π)2

∫
d2x d2yD(x,y)eip·(x−y) e−

x2

2B e−
y2

2B , (2.14)

which is recognizable as the one used in [13] up to a constant factor which cancels in the

anisotropy coefficients vn.

Since we are interested in the scattering of a small probe — such as a quark inside

a proton — off a large nucleus, it is reasonable to neglect the impact parameter b =

(x + y)/2 dependence in the target. Because on average there is no preferred direction in

the transverse plane, the expectation value D(x,y) then depends only on the magnitude

of the transverse separation r = x− y of the dipole,3

D(x,y) ≡ D(|x− y|) . (2.15)

Since the dipole coordinate r is the conjugate variable to the momentum transfer p−k for

a single quark scattering, the symmetry in eq. (2.15) ensures that the momentum transfer

to each individual quark is on average symmetric with respect to the azimuthal angle.

2.2 Double inclusive spectrum and multiparticle correlations

We will now consider the case where two quarks scatter independently off the same nu-

cleus and shall study the correlations between the two scattered quarks. We will make the

simplifying assumption that the momenta of the two incoming quarks are initially uncor-

related4 — the two particle distribution Wqq(b1,k1,b2,k2) of incoming quarks factorizes

into the product of single quark distributions,

Wqq(b1,k1,b2,k2) = Wq(b1,k1)Wq(b2,k2) . (2.16)

The double inclusive distribution of scattered quarks then takes the form

d2N

d2p1 d2p2
=

∫
d2b1 d2b2

∫
d2k1

(2π)2

∫
d2k2

(2π)2
Wq(b1,k1)Wq(b2,k2)

×
∫

d2r1 d2r2e
i(p1−k1)·r1ei(p2−k2)·r2

×
〈
D
(
b1 +

r1

2
,b1 −

r1

2

)
×D

(
b2 +

r2

2
,b2 −

r2

2

)〉
. (2.17)

3The dipole expectation value can in general depend on the rotational invariants |b|,|r| and b · r. Once

one performs the averaging over the b distribution of the projectile, only the dependence on r remains. We

note however, that such an averaging can effectively introduce non-Gaussian correlations between several

dipoles. These can affect multiparticle correlations at a characteristic momentum scale given by the inverse

impact parameter dependence.
4We are mostly concentrating on the near-side “ridge” correlation for semihard momenta ∼ Qs. Thus we

are neglecting back-to-back momentum correlations [56, 57] that are particularly important for the away-

side “jet” peak [3, 58, 59] and contributions at the nonperturbative small intrinsic transverse momentum

scale of the probe. Such correlations should be taken into account in a full comparison with data.
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While we assumed the transverse momenta k1 and k2 of the two incoming quarks to be

uncorrelated, one observes from eq. (2.17) that this is no longer the case for the momenta

p1 and p2 of the scattered quarks. Since both quarks scatter off the same nucleus, the

momentum transfers p1 − k1 and p2 − k2 are correlated with each other, giving rise to

azimuthal correlations of the scattered quarks.

We note that the above model can be generalized in a straightforward way to study

correlation functions involving more than two particles. Such higher order correlation

functions can be related to higher order correlation functions of dipole correlators. For

example, four quark correlations in this model involve expectation values of products of

four dipoles in the fundamental representation.

3 Dipole-dipole correlator

The discussion in the previous section shows that all the features of two-particle correlations

are encoded in the expectation value of the dipole-dipole correlator 〈D(x,y)D(u,v)〉. We

will now study the properties of this correlator and discuss approximation schemes that

have been frequently employed in the literature.

3.1 Glasma graph approximation

The basic properties of the two particle correlation can be understood by studying the

interaction between the incoming quark and the target nucleus in terms of multiple gluon

exchanges. Clearly the dynamics of these gluon exchanges depends on the nature of color

charge correlations in the target and needs to be specified. A simple model of such cor-

relations is the MV model [41–43]. In this model, the underlying distribution of color

charges in the nucleus is assumed to be a Gaussian distribution such that all multigluon

correlations are uniquely determined by the two gluon correlation function.

A further approximation that simplifies the computation considerably is to assume

that each of the quarks in the projectile exchanges only two gluons with the target nucleus.

We will refer to this combination of the two gluon exchange approximation and Gaussian

statistics as the Glasma graph approximation, a term first introduced in ref. [2]. This

approximation has been used in a number of phenomenological studies of ridge correlations

in high energy collisions [1, 2, 4, 5, 25–29].

More specifically, the Glasma graph approximation can be understood by examining

the expression for the dipole-dipole correlator in terms of the color field. When the density

of color charges in the target nucleus gρ is small — corresponding to a dilute-dilute situation

— one can perform an expansion of the path ordered Wilson line around the identity

matrix, representing an expansion in terms of the number of gluons exchanged between

the projectile and the target. In order to keep the notation as light as possible, we will

denote the Wilson lines as V (x) = exp(−iΛ(x)) in the following,5 so that the expansion

takes the form

V (x) ' 1− iΛ(x)− 1

2
Λ2(x) +

i

6
Λ3(x) +

1

24
Λ4(x) + . . . . (3.1)

5Careful path ordering will not modify the results obtained as long as the correlations are local in x+.
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Evaluating the color traces for Λ(x) = Λa(x)ta as

tr[tatb] =
δab

2
, tr[tatbtc] =

1

4
(ifabc + dabc) , (3.2)

the dipole operator to O(Λ3) within this approximation takes the form

D(x,y)− 1 ' −1

2

δab

2Nc

(
ΛaxΛbx − 2ΛaxΛby + ΛayΛby

)
+
i

6

dabc

4Nc

(
ΛaxΛbxΛcx − 3ΛaxΛbxΛcy + 3ΛaxΛbyΛcy − ΛayΛbyΛcy

)
+ . . . . (3.3)

In the Gaussian approximation for the correlations of Λ the C and P odd O(Λ3) term

vanishes in the expectation value of the dipole operator and only the O(Λ2) remains. We

will denote the ΛΛ correlator as

〈Λa(x)Λb(y)〉 = δabγ(x− y) , (3.4)

which defines the correlation function γ(r). With this definition, we obtain [53]

D(x− y) ' 1− CF

(
γ(0)− γ(x− y)

)
.

Following the same logic as previously for the dipole expectation value, we will now

compute the dipole-dipole correlator by expanding up to O(Λ4) in the coupling constant.

The assumption of Gaussian statistics means that the four point correlation function can

be expressed in terms of the two point function in eq. (3.4) as

〈Λa(x)Λb(y)Λc(u)Λd(v)〉 = δabδcdγ(x− y)γ(u− v) + δacδbdγ(x− u)γ(y − v) (3.5)

+ δadδbcγ(x− v)γ(y − u) .

Thus one obtains

〈D(x,y)D(u,v)〉 ' D(x− y)D(u− v) (3.6)

+
C2

F

2(Nc
2 − 1)

(
γ(x− u)− γ(x− v)− γ(y − u) + γ(y − v)

)2
,

which, to this order of the approximation, is consistent with

〈D(x,y)D(u,v)〉 ' D(x− y)D(u− v) (3.7)

+
1

2(Nc
2 − 1)

(
D(x− v)−D(x− u)−D(y − v) +D(y − u)

)2
.

One observes from eq. (3.7) that the leading Nc contribution to the dipole-dipole correlator

factorizes into the product of single inclusive averages — corresponding to the independent

scattering of two quarks. Diagrammatically this corresponds to the disconnected contri-

bution in figure 2. Genuine correlations are contained in the second term of eq. (3.7) and

suppressed by a factor of 1/(Nc
2 − 1) as pointed out previously in [25, 27, 28]. These
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Figure 2. (Color online) Classes of diagrams contributing to the dipole-dipole correlator in double-

gluon exchange approximation.

correspond diagrammatically to the connected graphs in figure 2 and feature all possible

contractions between the x,y and u,v dipoles.

When calculating two particle correlations using eq. (2.17), one needs a Fourier trans-

form of the dipole-dipole correlator in eq. (3.7) to obtain the momentum transfer p−k from

the interaction with the target. One finds that the terms in eq. (3.7) that do not depend

on all four coordinates x,y,u,v only contribute for very soft momenta p,k on the order

of the incoming momentum of the projectile pT , qT ∼ 1/
√
B. Since we are focusing on the

dominant semihard gluons with pT , qT & Qs � 1/
√
B we will neglect these contributions

in the following and replace eq. (3.7) with

〈D(x,y)D(u,v)〉 ' D(x− y)D(u− v) (3.8)

+
1

(Nc
2 − 1)

(
D(y − u)D(x− v) +D(y − v)D(x− u)

)
.

Equation (3.8) is in fact the form used in the Glasma graph papers [1, 2, 4, 5, 25–29]. In

particular, in the comparisons to data performed in [2, 4, 5], the expectation value of the

dipole correlator is taken to satisfy the Balitsky-Kovchegov (BK) equation [60, 61]. Thus

the Glasma graph approximation, as employed in phenomenological computations, corre-

sponds to the merging of gluon ladders from multiple sources (all localized on a transverse

scale ∼ 1/Qs) into a single ladder exchange represented by the dipole correlator.
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3.2 Nonlinear Gaussian approximation

If we restrict ourselves to Gaussian correlations of gluon fields in the target, it is possible to

resum the multiple gluon exchange contributions to the dipole amplitude and the dipole-

dipole correlator analytically to all orders.6 Generalizing the notation from the glasma

graph case, one obtains [53]

D(x− y) = exp
(
CF (γ(x− y)− γ(0))

)
. (3.9)

This expression is a part of the nonlinear Gaussian approximation because it includes

all orders in Λ, evaluated with a the Gaussian ΛΛ correlator in eq. (3.4). This is to be

contrasted with the two-gluon exchange approximation eq. (3.1) which was expanded to

the lowest order. Using a well known algorithm [31, 32, 34–36, 38, 38–40, 55] for computing

higher point correlators one can obtain the dipole-dipole operator expectation value to all

orders in Λ assuming a Gaussian ΛΛ correlator as [62]

〈D(x,y)D(u,v)〉 = D(x− y)D(u− v)

[(
F (x,u; y,v) +

√
∆

2
√

∆
− F (x,y; u,v)

Nc
2
√

∆

)
e

Nc
4

√
∆

−

(
F (x,u; y,v)−

√
∆

2
√

∆
−F (x,y; u,v)

Nc
2
√

∆

)
e−

Nc
4

√
∆

]
× e−

Nc
4
F (x,u;y,v)+ 1

2Nc
F (x,y;u,v) , (3.10)

where F (x,y; u,v) is defined to be

F (x,y; u,v) =
1

CF
ln

(
D(x− u)D(y − v)

D(x− v)D(y − u)

)
. (3.11)

Here ∆ is short for ∆(x,y; u,v) and is given by

∆(x,y; u,v) = F 2(x,u; y,v) +
4

Nc
2F (x,y; u,v)F (x,v; u,y) . (3.12)

We will refer to eq. (3.10) as the “nonlinear Gaussian approximation” for the dipole-

dipole correlator. It is exact in the McLerran-Venugopalan (MV) model where dipole

and multipole correlators depend nonlinearly on the Λ fields, but the correlators of Λ’s

are Gaussian. One can easily check that the two-gluon exchange limit of the nonlinear

Gaussian (3.10) is the same as the two-gluon exchange approximation (3.6).

One can obtain sight into this relation by taking the large Nc limit for a constant

D(x− y):

〈D(x,y)D(u,v)〉 = D(x− y)D(u− v)

+
1

Nc
2

 ln
(
D(x−u)D(y−v)
D(x−v)D(u−y)

)
ln
(
D(x−y)D(u−v)
D(x−v)D(u−y)

)
2 [

D(x− v)D(u− y)

+D(x− y)D(u− v)

(
ln

(
D(x− y)D(u− v)

D(x− v)D(u− y)

)
− 1

)]
, (3.13)

6As suggested by our previous discussion, these become multiple ladder exchanges upon BK or JIMWLK

evolution of the dipole and dipole-dipole correlators.
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Figure 3. (Color online) Example of a higher order contribution to the non-linear Gaussian

approximation, which contributes to the x↔ y anti-symmetric part of the dipole-dipole correlator

at O(Λ6).

which shows again that the leading Nc contribution corresponds to the independent scat-

tering of two quarks, while genuine correlations are Nc suppressed.

While the nonlinear Gaussian approximation reproduces the double gluon exchange

(Glasma graph) approximation at O(Λ4) in the dilute limit, it also contains a series of

higher order terms. An important subset of higher order contributions corresponds to the

diagrams which separately break the x − y → y − x and u − v → v − u symmetries. As

we will discuss shortly these contributions are responsible for generating the odd moments

(v3, v5, . . .) in the Fourier expansion of the correlation function. One finds that the leading

contribution to the x ↔ y antisymmetric part can be associated with the square of the C
and P odd contribution to the dipole operator in eq. (3.3). Note that while the expectation

value of the odd term is zero in the Gaussian approximation, the expectation value of its

square is not, but is proportional to dabcdabc = (Nc
2 − 1)(Nc

2 − 4)/Nc. The contributions

from the odd terms correspond diagrammatically to the processes depicted in figure 3 and

take the form

〈D(x,y)D(u,v)〉−〈D(y,x)D(u,v)〉 ' −
C3

F

6

Nc
2−4

(Nc
2−1)2

(
γ(x−u)−γ(y−u) (3.14)

− γ(x−v)+γ(y−v)
)3
.

While for Nc = 2 the antisymmetric contribution vanishes identically to all orders, it is

nonvanishing for Nc ≥ 3 and suppressed by a factor of 1/Nc
2 relative to the disconnected

contribution in the large Nc limit.

4 Azimuthal correlations in quark nucleus scattering

We will now discuss the azimuthal correlations of quarks scattering off a large nucleus and

present comparisons of results for these correlations within different approximation schemes

introduced in the previous sections. To further quantify the correlations introduced by the

scattering, we will decompose the double inclusive distribution in eq. (2.17) into Fourier

modes in the relative azimuthal angle ∆φ between the two scattered quarks,

d2N

d2p1 d2p2
∝ 1 +

∞∑
n=1

2Vn∆(p1,p2) cos(n∆φ) . (4.1)
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The familiar coefficients vn{2}(pT ) can be obtained from the Vn∆ using [63]

vn{2}(pT ) =
Vn∆(pT , p

Ref
T )√

Vn∆(pRef
T , pRef

T )
, (4.2)

where pRef
T represents a range in transverse momentum corresponding to an experimental

reference bin.

4.1 Analytic estimates

Before we turn to a discussion of numerical results, it is useful to obtain further analytic

insight into the correlation functions themselves by considering the limit of a large probe

with small intrinsic transverse momentum (Q2
sB � 1). With the Gaussian Wigner distri-

bution introduced in section 2 it is convenient to absorb a part of the Wigner distribution

into the definition of a modified dipole distribution

γ̃(p) =

∫
d2r e−

r2

4BD(r) eip·r . (4.3)

such that the single inclusive distribution (2.8) becomes

dNq

d2p
=

1

(2π)2
γ̃(p) . (4.4)

Within the Glasma graph approximation the double inclusive distribution can then be

evaluated by combining eqs. (2.17) and (3.8) as

d2N

d2p d2q
=

1

(2π)4

{
γ̃(p)γ̃(q) +

1

(Nc
2 − 1)

[
e−(p+q)2B/2

(
γ̃

(
p− q

2

))2

+ e−(p−q)2B/2

(
γ̃

(
p + q

2

))2
]}

, (4.5)

which further reduces to

d2N

d2p d2q
=

1

(2π)4
γ̃(p)γ̃(q)

[
1 +

2π
(
δ(2)(p + q) + δ(2)(p− q)

)
B(Nc

2 − 1)

]
, (4.6)

in the limit of a large probe or at high momenta, where the intrinsic transverse momentum

of the probe can be neglected and we can approximate 2πBe−
B
2
k2 → (2π)2δ(2)(k). While

the first term inside the square bracket corresponds to the disconnected contribution and

does not contain any correlations, the connected term gives rise to a correlation which is

suppressed by 1/(Nc
2 − 1) and 1/(Q2

sB).

One also observes from eqs. (4.5) and (4.6) that the two particle correlation function has

a similar structure as the collinear limit of the Glasma graph computation [1, 2, 4, 5, 25–29].

It features a near side (p ≈ q) contribution as well as one on the away side (p ≈ −q), which

in terms of the Fourier decomposition in eq. (4.1) give rise to even harmonics v2, v4, . . ..

Odd harmonics v3, v5, . . . are not present in eqs. (4.5) and (4.6) as the above expressions

are manifestly symmetric under p→ −p.
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Figure 4. (Color online) Azimuthal correlations vn for scattering of two independent quarks off a

large nucleus in the MV model (left) and after JIMWLK evolution (right). Solid lines correspond

to results from the lattice simulation without additional approximation, dash-dotted lines (with

squares) show results in the non-linear Gaussian approximation, and dotted lines (with circles)

correspond to the Glasma graph approximation.

4.2 Numerical results

In order to establish the quality of the different approximations, we will now compare the

results for the Fourier coefficients vn to numerical lattice computations that fully evaluate

the correlation functions of Wilson lines. We begin with a comparison in the McLerran-

Venugopalan (MV) model where the Wilson lines are generated from a Gaussian ensemble

of fluctuating color charges. Following the numerical procedure of ref. [64], a set of Wilson

line configurations is generated according to eq. (2.6); these are then employed to extract

numerically the expectation value of the dipole operator D(r). With the expectation value

of the dipole operator we can then compute the double inclusive spectrum in eq. (2.17)

using the dipole-dipole correlator in the Glasma graph approximation of eq. (3.8) and in

the nonlinear Gaussian approximation of eq. (3.10). We also compute the double inclusive

spectrum directly from the lattice Wilson lines using the procedure described in ref. [13].

For each of these three different double inclusive spectra, we determine the Fourier coeffi-

cients vn using eqs. (4.1) and (4.2). We choose the reference momentum to be pRef
T = pT

such that vn(pT ) =
√
Vn∆(pT ). Our results for the Fourier coefficients vn(pT ) in the MV

model are shown in the left panel of figure 4.

We also perform, as discussed in [13], the JIMWLK rapidity evolution of the Wilson

lines for y = 7.6 units in rapidity for SU(3) and for y = 12.4 units for SU(2) with the same

running coupling formula and an initial saturation scale Qs/ΛQCD = 3.7 in both cases.

We use the running coupling prescription for the JIMWLK equation proposed in ref. [65].

We then compute again the double inclusive spectrum and the Fourier harmonics directly

from the lattice Wilson lines, as well as from the lattice result for the dipole. The results

including JIMWLK evolution are shown in the right panel of figure 4. For the MV model

the probe size is BQ2
s = 3.7 and for the JIMWLK simulations BQ2

s = 2.5; for a discussion

of the B-dependence see [13].

We note that for the MV model case the nonlinear Gaussian approximation agrees

perfectly with the direct numerical calculation for all vn up to the numerically accessible

– 12 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
1

values of pT . This is of course a simple numerical check of the analytical expressions

and the agreement should be exact because non-Gaussianities are absent by definition in

the MV model. In contrast, the Glasma graph approximation deviates significantly from

the numerical result. As discussed previously, the Glasma graph result does not have

any odd harmonics. However the even Fourier coefficients v2 and v4 too show significant

deviations from the exact numerical result especially around pT ∼ 2Qs, demonstrating that

nonlinearities are significant even at larger pT . The Glasma graph approximation should be

exact in the high momentum limit when |p|, |q|, |p−q| and |p+q| are all large. However,

even for a large |p| = |q| the azimuthal harmonics receive contributions from |p± q| . Qs

where the two-gluon exchange approximation is not very accurate.

With JIMWLK rapidity evolution, the distribution of color charges is no longer explic-

itly Gaussian. Therefore, although non-Gaussian contributions were not seen in the op-

erators studied previously in [37], it is possible that JIMWLK evolution of the azimuthal

anisotropies will introduce non-Gaussian contributions. Indeed this is seen in figure 4

(right) where we observe a deviation of the nonlinear Gaussian approximation from the

numerical result from solving the JIMWLK equations. Furthermore we see that both the

numerical and the nonlinear Gaussian results for all vn are reduced by the JIMWLK evolu-

tion. On the contrary, the Glasma graph results, after JIMWLK rapidity evolution of the

Wilson lines, are roughly the same as those for the MV model. Thus while better agreement

of the Glasma graph approximation with the nonlinear Gaussian and full JIMWLK results

is seen after rapidity evolution, this agreement is a fortuitous numerical coincidence.

We have also analyzed the Nc dependence of our results for vn employing the full

numerical calculation of the dipole-dipole correlator. Our results for the SU(2) and SU(3)

gauge theory are shown in figure 5, where we scale the Fourier coefficients v2 and v4 by

the color factor
√
Nc

2 − 1. This is because azimuthal correlations in the double inclusive

spectrum contain an overall factor of 1/(Nc
2−1) (see e.g. eq. (4.6)) and the vn’s are related

via a square root to the Fourier coefficients Vn∆ in the expansion of the double inclusive

spectrum. In fact, we find that this scaling works nearly perfectly both in the MV model

case (figure 5 (left)) and the JIMWLK evolved case (figure 5 (right)); in the former, small

differences are seen in v2 and v4 for only for large pT , where lattice cutoff effects can already

have an effect.

Finally, we demonstrate the dependence of our results on different choices for the

reference transverse momentum in figure 6. This is an interesting exercise because similar

studies can be performed with the experimental data and will help to distinguish between

different models. We find a clear suppression of the signal to the previously regarded case

pRef
T = pT when employing a fixed reference bin 0.5Qs < pRef

T < 3Qs. One observes

that for the Gaussian correlations in the MV model, this effect is particularly strong at

large pT in the Glasma graph approximation. In case of the JIMWLK-evolved results, all

approximations show a similarly strong suppression of the signal at large pT when using

the stated fixed reference momentum bin.

The decorrelation in pT observed in figure 6 is fairly fast and appears incompatible

with the experimental observations. Experimentally only a slow decorrelation can be seen

in the data when comparing experimental results for vn in p+Pb collisions using different
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Figure 5. (Color online) Nc dependence of the azimuthal correlations vn, scaled by the color factor√
Nc

2 − 1 for SU(2) and SU(3) gauge theory. The results are computed using the numerical lattice

calculation for the MV model (left) and after JIMWLK rapidity evolution (right).
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Figure 6. (Color online) Comparison of azimuthal correlations v2 in three different approximations

for different choices of the reference momentum in the MV model (left) and after JIMWLK evolution

(right). We compare pT = pRef
T to the case of a wider reference momentum bin 0.5Qs < pRef

T < 3Qs.

Solid lines correspond to results from the lattice simulation without additional approximation, dash-

dotted lines (with squares) show results in the non-linear Gaussian approximation, and dotted line

(with circles) correspond to the Glasma graph approximation.

methods [63, 66]. However a number of caveats are in order with regard to this comparison.

We emphasize that our results are for quarks or more generally on the parton level. While

hadronization effects will weaken the strong dependence on the choice of reference mo-

mentum observed on the parton level, a quantitative description of the experimental data

in initial state frameworks will also be quite sensitive to the choice of the fragmentation

scheme. The role of fragmentation in such correlations deserves a more detailed study in

the future (see also [67–69]).

5 The CGC and the color field domain model

We will now discuss the relation of the azimuthal correlations derived in the CGC frame-

work to those computed recently in the color field domain model introduced in [10, 11, 48,

49]. Since the latter qualitatively describes some key features of the ridge data in proton-

lead collisions at the LHC, it is interesting to compare and contrast this model with the

CGC based calculations we discussed thus far.
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5.1 Electric fields in the Glasma graph approximation

The color field domain model is usually formulated in terms of transverse color electric

fields and their correlators. To achieve an “apples-to-apples” comparison, we will first

show how our previous discussion in terms of dipole-dipole correlators can be formulated

in terms of color electric fields.

The classical color electric fields in the target, as shown in figure 1, can be expressed

in terms of the Wilson line correlators as

Ei(x) = iV (x)∂iV
†(x) . (5.1)

Performing a short distance expansion of the dipole operator, one obtains

D(x,y) ' 1− rirj

4Nc
Eai (b)Eaj (b). (5.2)

where we denote r = x− y and b = (x + y)/2. Within the weak field limit of the Glasma

graph approximation outlined previously, one can evaluate the correlator of color electric

fields as 〈
Eia(x)Ejb (y)

〉
= −δab∂i∂jγ(x− y) , (5.3)

where we have used eq. (3.4). We emphasize however that this equivalence is valid only in

the combined limit of weak fields and short distances. Using the electric field correlator

then yields the following expression for the dipole operator

〈D(x,y)〉 ' 1 + CF
rirj

2
∂i∂j γ(r)|r=0 . (5.4)

One can similarly use eq. (5.2) and express the dipole-dipole correlator in the short

distance limit as

〈D(x,y)D(u,v)〉 ' D(x−y)D(u−v)+
ri1r

j
1r
k
2rl2

16Nc
2

[〈
Eai (b1)Eaj (b1)Ebk(b2)Ebl (b2)

〉
(5.5)

−
〈
Eai (b1)Eaj (b1)

〉〈
Ebk(b2)Ebl (b2)

〉]
.

where x = b1 + r1/2,y = b1 − r1/2,u = b2 + r2/2,v = b2 − r2/2. This expression shows

that the expectation value of the dipole-dipole correlator is sensitive to fluctuations of the

color electric fields as characterized by the four point correlator.

In the Glasma graph approximation, the electric field is linearly proportional to the

charge density and thus has Gaussian correlations〈
Eia(x)Ejb (y)Ekc (u)Eld(v)

〉
=
〈
Eia(x)Ejb (y)

〉〈
Ekc (u)Eld(v)

〉
+
〈
Eia(x)Ekc (u)

〉〈
Ejb (y)Eld(v)

〉
+
〈
Eia(x)Eld(v)

〉〈
Ekc (u)Ejb (y)

〉
. (5.6)

The four point correlation function can be expressed in terms of the two point function as〈
Eia(x)Ejb (y)Ekc (u)Eld(v)

〉
= δabδcd∂i∂jγ(x− y)∂k∂lγ(u− v)

+ δacδbd∂i∂kγ(x− u)∂j∂lγ(y − v)

+ δadδbc∂i∂lγ(x− v)∂j∂kγ(y − u). (5.7)
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Combining the above expressions, the dipole-dipole correlator takes the form

〈D(x,y)D(u,v)〉 ' D(x− y)D(u− v) +
C2

F

2(Nc
2 − 1)

(
ri1r

j
2∂i∂jγ(b1 − b2)

)2
, (5.8)

which agrees precisely with the expansion of the result in the double gluon exchange ap-

proximation in eq. (3.7) in the short distance limit |r1| ∼ |r2| � |b1| ∼ |b2|.
This simple calculation shows that the physics of fluctuating color electric field domains

is implicitly contained in the conventional Glasma graph picture. While in the short dis-

tance (large momentum) limit the dipole-dipole correlator is expressed in terms of two and

four point correlators of electric fields, there is a one-to-one mapping between the statistical

properties of these electric fields and those of the Λ’s in the Glasma graph calculation.

5.2 The color field domain model and non-Gaussian correlations

We focused thus far on conventional models based on Gaussian correlations of color fields

inside a large nucleus. It is now interesting to understand how these relate to the color field

domain model [10, 11, 48, 49]. In our language, the color field domain model is obtained

by replacing the electric field correlator in eq. (5.3) by〈
Eia(x)Ejb (y)

〉
= −δ

ab

2

[
δij(1−A) + 2Aâiâj

]
∇2
Tγ(x− y) . (5.9)

This correlator in the color field domain model depends explicitly on the effective degree of

polarization A and the unit vector â characterizing the direction of the color electric field.

Expectation values of operators within the color field domain model are computed by

a two step averaging procedure. In the first step, one performs a Gaussian average with

the modified two point correlation function in eq. (5.9). The second step consists of an

average over all possible directions of the chromoelectric fields, â, such that〈
âiâj

〉
â

=
1

2
δij , (5.10)

and 〈
âiâj âkâl

〉
â

=
δijδkl + δikδjl + δilδjk

8
.

Implicit in this two step procedure is a physical assumption about time scales. One

assumes that partons within a color domain of size ∼ 1/Qs generate a color electric field

oriented in a particular direction â with a likelihood A ranging from 0 − 100% , which

is long lived on the time scale of the interaction such that partons in the projectile are

collimated relative to the direction â of this color electric field. A similar picture is implicit

in the work of [12] where the net momentum transfer from the projectile partons to the

target takes the place of the color electric field.

When the life time of the degrees of freedom responsible for the breaking of rotational

symmetry within each color domain is much larger than the time scale over which one

performs the average over the color electric fields inside the target in eq. (5.9), the orienta-

tion of the domain appears frozen on that time scale and a separate averaging is justifiable.

However it is not a priori evident that such a separation of time scales exists. In particular,
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it is not clear what would be the intrinsic or dynamical scale that separates the time scale

over which the color electric fields align themselves from the time scale over which one

performs the average over the different orientations of the field and why such an average

should be a Gaussian average.

Let us now discuss explicitly the calculation of the four point correlator of color electric

fields in the color field domain model. The only correlators that are related to physical

observables are the ones averaged over all unobservable degrees of freedom, including the

direction of â. Therefore, to understand the correlation structure of the model we must

compare the two- and four-point functions of the electric field after the full two step average.

Carrying out the two step averaging procedure for two point correlators by averaging

eq. (5.9) over â using eq. (5.10) one obtains〈〈
Eia(x)Ejb (y)

〉〉
â

=
δab

2
δij∇2

Tγ(x− y). (5.11)

The result is independent of the effective polarization A and the normalization has been

chosen in such a way that the two-point function eq. (5.11) agrees with the previous result

in eq. (5.3) for a rotationally invariant system in the short distance limit.7

The short distance expansion of the dipole-dipole correlator in eq. (5.5) involves the

(double) average of the four point correlation function which, after the first step, can be

expressed as〈〈
Eia(x)Ejb (y)Ekc (u)Eld(v)

〉〉
â

=

〈〈
Eia(x)Ejb (y)

〉〈
Ekc (u)Eld(v)

〉
+
〈
Eia(x)Ekc (u)

〉〈
Ejb (y)Eld(v)

〉
+
〈
Eia(x)Eld(v)

〉〈
Ekc (u)Ejb (y)

〉〉
â

. (5.13)

Performing the second average with eq. (5.2), one obtains〈〈
Eia(x)Ejb (y)Ekc (u)Eld(v)

〉〉
â

=
δabδcd

4

[(
1− 1

2
A2

)
δijδkl +

A2

2

(
δikδjl + δilδjk

)]
×∇2

Tγ(x− y)∇2
Tγ(u− v)

+
δacδbd

4

[(
1− 1

2
A2

)
δikδjl +

A2

2

(
δijδkl + δilδjk

)]
×∇2

Tγ(x− u)∇2
Tγ(y − v)

+
δadδbc

4

[(
1− 1

2
A2

)
δilδjk +

A2

2

(
δijδkl + δikδjl

)]
×∇2

Tγ(x− v)∇2
Tγ(y − u). (5.14)

7Note that for a rotationally invariant correlation function γ(r) in the short distance limit r → 0 we can

replace

∂i∂jγ(r)|r=0 =
δij

2
∇2

T γ(r)|r=0. (5.12)
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Comparing the two point and four point correlation functions of the color electric fields

in eqs. (5.11) and (5.14), one sees explicitly that the four point correlation function can

not be expressed in terms of the two point function, i.e. the color field domain model is

non-Gaussian. Specifically one finds that the dipole-dipole correlator

〈D(x1,y1)D(x2,y2)〉 ' D(r1)D(r2) +
C2

F

8(Nc
2 − 1)

(
(r1 · r2)∇2

Tγ(b1 − b2)

)2

+
C2

FA2

32

(
2(r1 · r2)2 − r2

1r
2
2

)(
∇2
Tγ(0)

)2

+
C2

FA2

16(Nc
2 − 1)

r2
1r

2
2

(
∇2
Tγ(b1 − b2)

)2

(5.15)

is a sum of a Gaussian piece (present already in eq. (5.8)) and non-Gaussian terms pro-

portional to A2 induced by the two step averaging procedure. The non-Gaussian terms

are referred to as “disconnected contributions” in ref. [48]. In addition to the small dipole

limit r2
1, r

2
2 � 1/Q2

s that is assumed in this discussion, one can additionally take the limit

b2
1,b

2
2 � 1/Q2

s . In this case the two-gluon exchange approximation becomes exact and

thus the Glasma graphs and the nonlinear Gaussian are equivalent to each other. Even

in this limit the A-terms are not suppressed in any way and the color field domain model

remains different from the other approaches considered in this paper.

It is obvious that the (r1 · r2)2 terms introduce an additional A-dependent cos 2φ

correlation between the two dipoles. Upon Fourier transformation, this modifies the angular

structure of the correlation between the two produced particles. What remains unclear at

this stage is the physical origin of this particular form of non-Gaussian correlators as well

as the magnitude of the non Gaussianity characterized by the additional A parameter in

this model.

5.3 Interpretations of the color field domain model

We noted previously but wish to emphasize again that fluctuating domains of color electric

field are present also in the Glasma graph or non-linear Gaussian approximation and they

are not a new physical feature added by the color field domain model. What is different in

the color field domain model is that the direction of the chromoelectric field is treated expli-

citly as a long lived degree of freedom. By modifying the correlation function of electric

fields according to eq. (5.9) and performing a separate average over the orientation of the

electric fields the statistics of these domains is altered significantly. Most importantly, this

can lead to sizable non-Gaussian correlations depending on the magnitude of the parame-

ter A in this model. Since the single inclusive distribution is not sensitive to A, its value

can only be determined from correlation measurements. An observable that would be par-

ticularly sensitive to the presence of intrinsic non-Gaussianities would be the four-particle

cumulant flow coefficient, as discussed in [48]. We will now discuss three possible interpreta-

tions of the non-Gaussian correlations represented by the A-term in the color domain model.

1. The color electric field is a nonlinear function of the color charge density. Thus even

if the color charges (or, equivalently the Λ’s) have a Gaussian distribution, the color
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electric fields and thus the dipole operators can have non-Gaussian correlations. One

possible interpretation of the color field domain model is as an effective way to ac-

count for the non-linear relation between electric fields and color charge densities in

the target in an otherwise linearized calculation. The Glasma graph approximation of

eq. (5.1) assumes that the electric field is linearly proportional to the color charge and

thus the electric fields have Gaussian correlations. The nonlinear Gaussian approxi-

mation, on the other hand, has Gaussian correlations for color charges but not for the

electric fields. In this interpretation of the color field domain model, the corrections

encoded in A should be proportional to the difference between the Glasma graph

and the nonlinear Gaussian computations in this paper. The total anisotropy of the

azimuthal two-particle distribution calculated from the MV model (see e.g. [11]), is

then the sum of the Glasma graphs and the A-term. In this interpretation one has

parametrically A2 ∼ 1/(Nc
2−1), since correlations are Nc-suppressed (relative to the

uncorrelated term) in both the nonlinear Gaussian and the Glasma graph approxi-

mations. Our numerical results in figure 4 show that such non-linear corrections can

indeed be sizeable and should be taken into account as a correction to the Glasma

graph result. However, if this is the interpretation it would seem more natural to

directly use the non-linear Gaussian approximation rather than introducing an addi-

tional parameter. In particular, it is not obvious whether a constant A could have a

similar momentum dependence as the nonlinear Gaussian approximation, given that

the color field domain model differes from the nonlinear Gaussian even in the small

distance limit.

2. A second possible interpretation of the A-term is that it represents non-Gaussian

correlations that can emerge from JIMWLK rapidity evolution even when starting

from a Gaussian initial condition. This contribution is, in our present calculation,

represented by the difference between the full JIMWLK result and the nonlinear

Gaussian. Indeed we see signs of a ∼ 10% deviation between the two for pT & Qs.

However, this difference is relatively small in practical terms and might not have

a significant influence on phenomenology. From a theory perspective, it is to our

knowledge the first instance observed in the literature of a meaningful breaking of

the Gaussian approximation to JIMWLK. We see no obvious reason why the deviation

from Gaussianity seems larger here than in the observables studied in ref. [37]. This

issue might call for additional studies in the future including a more systematical

check of discretization effects in the lattice calculations.

3. Finally the most intriguing possibility is that the A-term represents an intrinsic

non-Gaussian correlation that is present in the initial condition for JIMWLK evolu-

tion and survives substantially after evolution. This is the interpretation suggested

in [10, 48]. The possible existence of such non-Gaussian correlators was previously

suggested in [6, 7] and later studied in [70, 71]. While the Gaussian MV model can

be justified on quite general grounds [72] as arising, due to the central limit theorem,

from a superposition of a large amount of uncorrelated color charges in a heavy nu-

cleus, deviations from Gaussian statistics are naturally expected for a small number of
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large x degrees of freedom. The existence and persistence of such a non-Gaussianity

at small x would thus be a signal of remarkably strong long range rapidity corre-

lations inside the gluon cascade building up the strong color fields at small x. The

computations in this paper do not address this possibility of an intrinsic non-Gaussian

four-particle correlation because we have been working in the MV model+JIMWLK

evolution setup where such correlations are absent in the initial conditions.

6 Summary and conclusions

We explored a number of calculational schemes to compute two particle correlations of

quarks scattering off a highly energetic nucleus. All cases correspond to different ap-

proximations within the dilute-dense limit of the color glass condensate framework. The

two-particle correlations are quantified in terms of Fourier coefficients in an expansion in

relative azimuthal angle of the double inclusive distribution of scattered quarks. This dis-

tribution is proportional to the dipole-dipole correlator. The study of the properties of this

correlator in the various approximation schemes was the primary objective of this work.

The simplest approximation scheme considered was the glasma graph approximation.

In this case, the lightlike Wilson lines in the dipole-dipole correlator are expanded to low-

est order, restricting the interaction with the target to two gluon exchange. One further

assumes that the gluon correlations in the target are Gaussian correlations. This approxi-

mation scheme has been used previously in the literature to study azimuthally collimated

double inclusive gluon production in p+p and p+Pb collisions.

Another approximation scheme, of greater complexity, is the nonlinear Gaussian ap-

proximation. In this case, all multigluon exchanges are resummed to all orders to obtain a

complicated analytical expression for the dipole-dipole correlator. This expression is exact

as long as there are only Gaussian correlations in the target. This is for instance the case

for the MV model.

These analytical results are a good benchmark for numerical studies wherein the Wilson

lines are computed on 2+1-dimensional lattices for Gaussian distributed sources - good

agreement is expected and achieved. With the MV initial conditions for the Wilson lines

at a given rapidity, the JIMWLK equations are solved on the lattice to determine the Wilson

lines at larger rapidities. These then allow one to determine in principle expectation values

of n-dipole correlators as a function of rapidity.

We studied the Fourier harmonics v2, v3, and v4 that are extracted from azimuthal two

particle correlations in the various approximation schemes. The Glasma graph approxima-

tion and the nonlinear Gaussian approximations differ appreciably for pT ∼ 2Qs in the MV

model, indicating the importance of coherent multiple scattering effects. Since the Glasma

graph approximation is at the heart of most comparisons to experimental data, this calls

for a more detailed study to further quantify its theoretical uncertainties. However, we

believe that in terms of the phenomenological consequences most of this difference can be

accomodated within the uncertainties in the overall normalization of the Glasma graph

calculations [1–5]. A significant difference between the two approximation schemes is that

the symmetry constraints inherent in the Glasma graph approximation do not produce any

– 20 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
1

odd harmonics in contrast to the nonlinear Gaussian approximation which generates all

odd harmonics of the azimuthal double inclusive distribution. With JIMWLK rapidity evo-

lution, the differences in the v2,4 coefficients computed in the Glasma graph and nonlinear

Gaussian schemes decrease significantly. Furthermore, we find that the coefficients in the

two schemes are quite close to those computed by solving JIMWLK numerically without

any approximation to the dipole-dipole correlator. Since we do not currently have a good

interpretation for this better agreement, we believe that it may to some extent be accidental.

We analyzed the dependence of our results on the number of colors by comparing

computations for SU(3) and SU(2) gauge fields and found precisely the expected scaling

of Vn∆(pT ) with 1/(Nc
2 − 1). This result confirmed that the azimuthal angle dependent

correlations are suppressed parametrically by 1/Nc
2.

We studied the dependence of the Fourier coefficients on the reference transverse mo-

mentum pRef
T (the momentum of the second scattered quark) in the different approxima-

tion schemes. These showed clear differences for the two reference momenta considered:

pRef
T = pT , and 0.5Qs < pRef

T < 3Qs. For all the approximation schemes, the choice of equal

pT led to a larger signal for pT & Qs, with the Glasma graph approximation showing the

largest differences. JIMWLK rapidity evolution seems to increase the difference between

the different pRef
T choices. We note however, that the choice of the fragmentation scheme

can qualitatively influence the comparison of model computations of gluon correlations to

the hadron correlation data. This topic deserves a more detailed study in the future.

Finally we analyzed in detail the relation of the color glass condensate based compu-

tations to a color domain model which captures qualitative features of the multiparticle

azimuthal correlations observed in proton-nucleus collisions. In this framework, the dipole-

dipole correlator is modified to include an additional term that models the polarization of

gluon fields in individual domains of color charge within the target. We conclude that this

term, proportional to the polarization parameter A, introduces non-Gaussian correlations

amongst the color electric fields inside the target nucleus. On the other hand, if such non-

Gaussianities are not explicitly introduced, the color domain model reduces to the MV

model in the Glasma graph approximation.

We also discussed possible origins of non-Gaussian correlations of the color fields of a

large nucleus. One possibility is that these correspond to non-Gaussian correlations induced

by JIMWLK rapidity evolution of Gaussian correlations at the initial rapidity. However

our estimates of this effect suggest that such non-Gaussian correlations are too small to be

relevant phenomenologically. A more interesting possibility is that the A polarization term

introduced in this model arises from intrinsic four point correlations that are significant

in the initial condition and whose magnitude is preserved with rapidity evolution. Such

correlations would be interesting to study in the future.
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