17 research outputs found

    National strategy for health research and innovation

    Get PDF
    In 2011, the Malta Council for Science and Technology (MCST) commissioned the Development of a dedicated strategy for health research and innovation in line with its mandate from Government to identify areas of national priority and design and to also implement strategic approaches to enhance economic competitiveness and quality of life. The Strategy was drawn up by a steering group which also included people from outside the health sector, to ensure that it also keeps note of the economic side of things.peer-reviewe

    Development and application of a microarray meter tool to optimize microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects.</p> <p>Findings</p> <p>The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins.</p> <p>Discussion</p> <p>The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies.</p

    Analysis of Endocrine Disruption in Southern California Coastal Fish Using an Aquatic Multispecies Microarray

    Get PDF
    BackgroundEndocrine disruptors include plasticizers, pesticides, detergents, and pharmaceuticals. Turbot and other flatfish are used to characterize the presence of chemicals in the marine environment. Unfortunately, there are relatively few genes of turbot and other flatfish in GenBank, which limits the use of molecular tools such as microarrays and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to study disruption of endocrine responses in sentinel fish captured by regulatory agencies.ObjectivesWe fabricated a multigene cross-species microarray as a diagnostic tool to screen the effects of environmental chemicals in fish, for which there is minimal genomic information. The array included genes that are involved in the actions of adrenal and sex steroids, thyroid hormone, and xenobiotic responses. This microarray will provide a sensitive tool for screening for the presence of chemicals with adverse effects on endocrine responses in coastal fish species.MethodsWe used a custom multispecies microarray to study gene expression in wild hornyhead turbot (Pleuronichthys verticalis) collected from polluted and clean coastal waters and in laboratory male zebrafish (Danio rerio) after exposure to estradiol and 4-nonylphenol. We measured gene-specific expression in turbot liver by qRT-PCR and correlated it to microarray data.ResultsMicroarray and qRT-PCR analyses of livers from turbot collected from polluted areas revealed altered gene expression profiles compared with those from nonaffected areas.ConclusionsThe agreement between the array data and qRT-PCR analyses validates this multispecies microarray. The microarray measurement of gene expression in zebrafish, which are phylogenetically distant from turbot, indicates that this multispecies microarray will be useful for measuring endocrine responses in other fish

    Everyday memory: towards a translationally effective method of modelling the encoding, forgetting and enhancement of memory

    Get PDF
    The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial ‘everyday memory’ task. We calibrate it systematically by interrogating certain well-established determinants of memory and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in six alternative choice or probe trials at various time-points later. Training continued daily over a period of 4 months, realizing a stable high level of performance and characterized by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome-wide analysis of gene expression led to a new observation – stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds

    Developmental and extracellular matrix-remodeling processes in rosiglitazone-exposed neonatal rat cardiomyocytes

    No full text
    Objective: The objective of this study was to investigate the effects of rosiglitazone (Avandia®) on gene expression in neonatal rat ventricular myocytes. Materials &amp; methods: Myocytes were exposed to rosiglitazone ex vivo. The two factors examined in the experiment were drug exposure (rosiglitazone and dimethyl sulfoxide vs dimethyl sulfoxide), and length of exposure to drug (½ h, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, 18 h, 24 h, 36 h and 48 h). Results: Transcripts that were consistently expressed in response to the drug were identified. Cardiovascular system development, extracellular matrix and immune response are represented prominently among the significantly modified gene ontology terms. Conclusion: Hmgcs2, Angptl4, Cpt1a, Cyp1b1, Ech1 and Nqo1 mRNAs were strongly upregulated in cells exposed to rosiglitazone. Enrichment of transcripts involved in cardiac muscle cell differentiation and the extracellular matrix provides a panel of biomarkers for further analysis in the context of adverse cardiac outcomes in humans. Original submitted 15 November 2013; Revision submitted 14 February 2014 </jats:p

    PARP1-SNAI2 transcription axis drives resistance to PARP inhibitor, Talazoparib

    No full text
    Abstract The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors

    Dataset for: Everyday memory: towards a translationally effective method of modeling the encoding, forgetting and enhancement of memory.

    No full text
    The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory, and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial ‘everyday memory’ task. We calibrate it systematically by interrogating certain well-established determinants of memory, and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in 6-alternative choice- or probe trials at various time-points later. Training continued daily over a period of 4 months, realising a stable high level of performance and characterised by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome wide-analysis of gene-expression led to a new observation - stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds
    corecore