16 research outputs found

    Strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam

    Get PDF
    A study of crystal assisted collimation has been continued at the CERN SPS for different energies of stored beams using 120 GeV/. c and 270 GeV/. c protons and Pb ions with 270 GeV/. c per charge. A bent silicon crystal used as a primary collimator deflected halo particles using channeling and directing them into the tungsten absorber. A strong correlation of the beam losses in the crystal and off-momentum halo intensity measured in the first high dispersion (HD) area downstream was observed. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with nuclei is significantly reduced in comparison with the non-oriented crystal. A maximal reduction of beam losses in the crystal larger than 20 was observed with 270 GeV/. c protons. The off-momentum halo intensity measured in the HD area was also strongly reduced in channeling conditions. The reduction coefficient was larger than 7 for the case of Pb ions. A strong loss reduction was also detected in regions of the SPS ring far from the collimation area. It was shown by simulations that the miscut angle between the crystal surface and its crystallographic planes doubled the beam losses in the aligned crystal.peer-reviewe

    Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals

    Get PDF
    New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 GeV/. c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 μrad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orientations of the crystal. The corresponding reduction was in the range of 2-5 for both protons and Pb ions.peer-reviewe

    Observation of parametric X-rays produced by 400 GeV/c protons in bent crystals

    Get PDF
    Spectral maxima of parametric X-ray radiation (PXR) produced by 400 GeV/c protons in bent silicon crystals aligned with the beam have been observed in an experiment at the H8 external beam of the CERN SPS. The total yield of PXR photons was about 10-6 per proton. Agreement between calculations and the experimental data shows that the PXR kinematic theory is valid for bent crystals with sufficiently small curvature as used in the experiment. The intensity of PXR emitted from halo protons in a bent crystal used as a primary collimator in a circular accelerator may be considered as a possible tool to control its crystal structure, which is slowly damaged because of irradiation. The intensity distribution of PXR peaks depends on the crystal thickness intersected by the beam, which changes for different orientations of a crystal collimator. This dependence may be used to control crystal collimator alignment by analyzing PXR spectra produced by halo protons.peer-reviewe

    High-efficiency deflection of high-energy negative particles through axial channeling in a bent crystal

    Get PDF
    Deflection due to axial channeling in a silicon crystal bent along the [111] axis was observed for 150 GeV/c negative particles, mainly π− mesons, at one of the secondary beams of the CERN SPS. The whole beam was deflected to one side with the efficiency of about 90% and with the peak position at the bend crystal angle α=43 μrad. The deflection occurs mainly due to doughnut scattering of above-barrier particles by the atomic strings of the crystal. However, due to a high probability of particle recapture into bound states with the atomic strings their contribution to the deflection should be about 15% for our case according to simulation results

    High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal

    No full text
    Beam deflection due to axial channeling in a silicon crystal bent along the [111] axis was observed with 400  GeV/c protons at the CERN Super Proton Synchrotron. The condition for doughnut scattering of protons by the atomic strings of the crystal was attained. Such a condition allowed one to observe a beam deflection of 50  μrad with about 30% efficiency. The contribution of hyperchanneled states of protons to the observed beam deflection was less than 2% according to simulation results
    corecore