95 research outputs found

    Faire parler les données des bibliothèques : du Big Data à la visualisation de données

    Get PDF
    Mémoire de fin d\u27étude du diplôme de conservateur, promotion 23, portant sur les enjeux de la réutilisation des données des bibliothèques à l\u27ère du Big Data

    An Evolving Understanding of Enigmatic Large Ripples on Mars

    Get PDF
    Two scales of ripples form in fine sand on Mars. The larger ripples were proposed to have an equilibrium size set by an aerodynamic process, making them larger under thinner atmospheres and distinct from smaller impact ripples. Sullivan et al. (2020) show that large ripples can develop in a numerical model due to Mars’ low atmospheric pressure. Although their proposed growth‐limiting mechanism is consistent with an aerodynamic process, they argue that the ripples in their model are simply large versions of impact ripples, not a separate class of ripples. Here, we explore this debate by synthesizing recent advances in large‐ripple formation. Although significant knowledge gaps remain, it is clear that large martian ripples are larger under thinner atmospheres, and thus remain a powerful paleoclimate indicator

    A Probabilistic Approach to Determination of Ceres' Average Surface Composition From Dawn Visible‐Infrared Mapping Spectrometer and Gamma Ray and Neutron Detector Data

    Get PDF
    The Visible‐Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft revealed that aqueous secondary minerals—Mg‐phyllosilicates, NH4‐bearing phases, and Mg/Ca carbonates—are ubiquitous on Ceres. Ceres' low reflectance requires dark phases, which were assumed to be amorphous carbon and/or magnetite (∼80 wt.%). In contrast, the Gamma Ray and Neutron Detector (GRaND) constrained the abundances of C (8–14 wt.%) and Fe (15–17 wt.%). Here, we reconcile the VIR‐derived mineral composition with the GRaND‐derived elemental composition. First, we model mineral abundances from VIR data, including either meteorite‐derived insoluble organic matter (IOM), amorphous carbon, magnetite, or combination as the darkening agent and provide statistically rigorous error bars from a Bayesian algorithm combined with a radiative‐transfer model. Elemental abundances of C and Fe are much higher than is suggested by the GRaND observations for all models satisfying VIR data. We then show that radiative transfer modeling predicts higher reflectance from a carbonaceous chondrite of known composition than its measured reflectance. Consequently, our second models use multiple carbonaceous chondrite endmembers, allowing for the possibility that their specific textures or minerals other than carbon or magnetite act as darkening agents, including sulfides and tochilinite. Unmixing models with carbonaceous chondrites eliminate the discrepancy in elemental abundances of C and Fe. Ceres' average reflectance spectrum and elemental abundances are best reproduced by carbonaceous‐chondrite‐like materials (40–70 wt.%), IOM or amorphous carbon (10 wt.%), magnetite (3–8 wt.%), serpentine (10–25 wt.%), carbonates (4–12 wt.%), and NH4‐bearing phyllosilicates (1–11 wt.%)

    Innovative Mars Global International Exploration (IMaGInE) mission

    Get PDF
    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission whose mission objectives are to deliver a crew of four astronauts to the surface of Deimos and a robotic exploration mission to Phobos for approx-imately 343 days during the years 2031 and 2032, perform surface excursions, technology demonstrations, and In Situ Resource Utilization (ISRU) of the Martian moons as well as site reconnaissance for future human exploration of Mars. This is the winning mission design of the 2016 Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) competition, awarded with the "Best in Theme," "Best Overall," and "Pio-neering Exceptional Achievement Concept Honor (PEACH)" prizes. This competition was sponsored by NIA and NASA

    Complementary classifications of aeolian dunes based on morphology, dynamics, and fluid mechanics

    Get PDF
    Dunes form where winds blow over a bed of mobile sediment grains – conditions that are common in our solar system. On Earth, dunes abound in arid continental interiors and along sandy coastlines. Dune fields have also been recognized on Venus, Mars, Saturn's moon Titan, and Pluto. In response to the different boundary conditions and other environmental forcings, dunes adopt a rich diversity of shapes, sizes, and behaviors. Thus, people around the globe and over centuries have developed a rich vocabulary to describe dunes and their complexity. As a result, existing dune nomenclature often includes redundant terms with differing definitions across scientific communities. Previous studies have endeavored to link dune shape to environmental forcing, usually by means of correlation. Although instructive, correlation-based classifications can be misleading if not based on an underlying mechanics and if dune morphogenetic classes are not uniquely defined. Here, we synthesize existing dune terminology and use the last two decades of research on dune morphodynamics to propose three complementary dune classification schemes based on: (1) descriptive dune gemorphology, (2) morphodynamic processes, and (3) fluid mechanics and physics of sediment transport. The first classification relates dune types to geomorphic setting, presence or absence of vegetation or obstacles, and dune shape (including planform shape, and cross-sectional symmetry or asymmetry). Dune classes can be further subdivided where the direction of sand transport is known independently. The second classification relates dune types and shapes to bed properties (sand-covered vs partially starved bed) and wind forcing (directional variability or the relative strengths and directions of wind modes) that together influence dune dynamics (growth, migration, elongation) and select the dominant processes by which dunes are shaped and oriented relative to the resultant transport direction. The third classification relates, for different planetary environments, the range of possible dune sizes, from minimum to maximum wavelength, to flow regime (rough or smooth) and response of sediment transport, which influence the coupling between sand bed topography, fluid flow, and sediment transport. These characteristic lengths are useful scales for comparative geomorphology. The three classification schemes provide complementary information. Together, they form a unified framework for geomorphologists, sedimentologists, geographers, physicists, and others to describe windblown sand dunes on Earth and beyond through their shape, dynamics, and size as a response to winds and boundary conditions

    Synthesis of a-chlorolactams by cyanoborohydride-mediated radical cyclization of trichloroacetamides

    Get PDF
    A cyanoborohydride-promoted radical cyclization methodology has been developed to access α-chlorolactams in a simple and efficient way, using NaBH3CN and trichloroacetamides easily available from allylic and homoallylic secondary amines. This methodology allowed the synthesis of a library of αchlorolactams (mono and bicyclic), which were tested for herbicidal activity, trans-3-chloro-4-methyl-1-(3-trifluoromethyl)phenyl-2-pyrrolidinone being the most active

    Advanced concept for a crewed mission to the Martian moons

    Get PDF
    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition
    corecore