200 research outputs found

    Selective loss of TGFbeta Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines.

    Get PDF
    In cancer, Transforming Growth Factor beta (TGFbeta) increases proliferation and promotes invasion via selective loss of signalling pathways. Oesophageal adenocarcinoma arises from Barrett's oesophagus, progresses rapidly and is usually fatal. The contribution of perturbed TGFbeta signalling in the promotion of metastasis in this disease has not been elucidated. We therefore investigated the role of TGFbeta in Barrett's associated oesophageal adenocarcinoma using a panel of cell lines (OE33, TE7, SEG, BIC, FLO). 4/5 adenocarcinoma cell lines failed to cell cycle arrest, down-regulate c-Myc or induce p21 in response to TGFbeta, and modulation of a Smad3/4 specific promoter was inhibited. These hyperproliferative adenocarcinoma cell lines displayed a TGFbeta induced increase in the expression of the extracellular matrix degrading proteinases, urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor 1 (PAI-1), which correlated with an invasive cell phenotype as measured by in vitro migration, invasion and cell scattering assays. Inhibiting ERK and JNK pathways significantly reduced PAI and uPA induction and inhibited the invasive cell phenotype. These results suggest that TGFbeta Smad-dependent signalling is perturbed in Barrett's carcinogenesis, resulting in failure of growth-arrest. However, TGFbeta can promote PAI and uPA expression and invasion through MAPK pathways. These data would support a dual role for TGFbeta in oesophageal adenocarcinoma

    Molecular dissection of the domain architecture and catalytic activities of human PrimPol

    Get PDF
    PrimPol is a primase–polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase activity. Although apparently dispensable for its polymerase activity, the zinc finger also regulates the processivity and fidelity of PrimPol's extension activities. When the zinc finger is disrupted, PrimPol becomes more promutagenic, has an altered translesion synthesis spectrum and is capable of faithfully bypassing cyclobutane pyrimidine dimer photolesions. PrimPol's polymerase domain binds to both single- and double-stranded DNA, whilst the zinc finger domain binds only to single-stranded DNA. We additionally report that although PrimPol's primase activity is required to restore wild-type replication fork rates in irradiated PrimPol−/− cells, polymerase activity is sufficient to maintain regular replisome progression in unperturbed cells. Together, these findings provide the first analysis of the molecular architecture of PrimPol, describing the activities associated with, and interplay between, its functional domains and defining the requirement for its primase and polymerase activities during nuclear DNA replication

    Range of pathologies diagnosed using a minimally invasive capsule sponge to evaluate patients with reflux symptoms.

    Get PDF
    AIMS: Reflux symptoms are highly prevalent and non-specific; hence, in the absence of alarm symptoms, endoscopy referral decisions are challenging. This study evaluated whether a non-endoscopic Cytosponge could detect benign oesophageal pathologies and thus have future potential in triaging patients with persistent symptoms. METHODS AND RESULTS: Two complementary cohorts were recruited: (i) patients with reflux symptoms and no prior endoscopy (n = 409), and (ii) patients with reflux symptoms referred for endoscopy (n = 411). All patients were investigated using the Cytosponge and endoscopy. Significant epithelial inflammation was present in 130 (16%) Cytosponge samples, 32 of which had ulcer slough. Candida and significant inflammation was detected in a further 22 (2.3%) cases; epithelial infiltration with >15 eosinophils/high-power field reflecting possible eosinophilic oesophagitis (EOE) in five (0.6%); and viral inclusions suggestive of herpes oesophagitis in one (0.1%). No significant pathology was detected in the majority, 662 (81%), of Cytosponge samples. Cytosponge and endoscopy findings were in agreement in 574 (70%) cases, in 165 (67%) of the discordant cases one investigation showed mild inflammation while the other was negative, with an additional 22 (8.9%) differing on the extent of inflammation. Eighteen cases with severe inflammation, six with candida and two with EOE were detected only at endoscopy, while 18 with candida and significant inflammation, 13 with ulcer slough, one probable EOE and one viral oesophagitis were identified on the Cytosponge only. CONCLUSIONS: The Cytosponge detects a range of benign oesophageal pathologies, and therefore has potential clinical utility in the triaging of patients with troublesome reflux symptoms. This warrants further investigation.The BEST study was funded by the Medical Research Council. The BEST2 project was funded by Cancer Research UK. RCF has programmatic funding from the Medical Research Council and infrastructure support from the Cambridge NIHR Biomedical Research Centre and the Cambridge Experimental Medicine Centre. ALP is an NIHR Academic Clinical Fellow and holds the Pang Kam Ping Fellowship in Medicine at Queens’ College, Cambridge. The Addenbrooke’s Hospital Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/his.1303

    Template-dependent polymerization across discontinuous templates by the heterodimeric primase from the hyperthermophilic archaeon Sulfolobus solfataricus

    Get PDF
    The eukaryotic-like primase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsoPriSL) exhibits a range of activities including template-dependent de novo primer synthesis, primer extension and template-independent terminal nucleotidyl transfer using either rNTPs or dNTPs. Remarkably, the enzyme is able to synthesize products far longer than templates in vitro. Here we show that the long products resulted from template-dependent polymerization across discontinuous templates (PADT) by SsoPriSL. PADT was initiated through either primer synthesis or terminal transfer, and occurred efficiently on templates containing contiguous dCs. Template switching took place when the 3′-end of a growing strand synthesized on one template annealed to another template directly or following the terminal addition of nucleotides, and was subsequently extended on the new template. The key to PADT was the ability of SsoPriSL to promote strand annealing. SsoPriSL catalyzed PADT with either dNTPs or rNTPs as the substrates but preferred the latter. The enzyme remained active in PADT but became inefficient in primer synthesis in vitro when temperature was raised from 55°C to 70°C. Our results suggest that SsoPriSL is capable of bridging noncomplementary DNA ends and, therefore, may serve a role in double-strand DNA break repair in Archaea

    Evaluation of DNA primase DnaG as a potential target for antibiotics

    Get PDF
    Mycobacteria contain genes for several DNA-dependent RNA primases, including dnaG, which encodes an essential replication enzyme that has been proposed as a target for antituberculosis compounds. An in silico analysis revealed that mycobacteria also possess archaeo-eukaryotic superfamily primases (AEPs) of unknown function. Using a homologous recombination system, we obtained direct evidence that wild-type dnaG cannot be deleted from the chromosome of Mycobacterium smegmatis without disrupting viability, even in backgrounds in which mycobacterial AEPs are overexpressed. In contrast, single-deletion AEP mutants or mutants defective for all four identified M. smegmatis AEP genes did not exhibit growth defects under standard laboratory conditions. Deletion of native dnaG in M. smegmatis was tolerated only after the integration of an extra intact copy of the M. smegmatis or Mycobacterium tuberculosis dnaG gene, under the control of chemically inducible promoters, into the attB site of the chromosome. M. tuberculosis and M. smegmatis DnaG proteins were overproduced and purified, and their primase activities were confirmed using radioactive RNA synthesis assays. The enzymes appeared to be sensitive to known inhibitors (suramin and doxorubicin) of DnaG. Notably, M. smegmatis bacilli appeared to be sensitive to doxorubicin and resistant to suramin. The growth and survival of conditional mutant mycobacterial strains in which DnaG was significantly depleted were only slightly affected under standard laboratory conditions. Thus, although DnaG is essential for mycobacterial viability, only low levels of protein are required for growth. This suggests that very efficient inhibition of enzyme activity would be required for mycobacterial DnaG to be useful as an antibiotic target

    Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase

    Get PDF
    Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown

    Gastro-esophageal reflux disease symptoms and demographic factors as a pre-screening tool for Barrett's esophagus.

    Get PDF
    BACKGROUND: Barrett's esophagus (BE) occurs as consequence of reflux and is a risk factor for esophageal adenocarcinoma. The current "gold-standard" for diagnosing BE is endoscopy which remains prohibitively expensive and impractical as a population screening tool. We aimed to develop a pre-screening tool to aid decision making for diagnostic referrals. METHODOLOGY/PRINCIPAL FINDINGS: A prospective (training) cohort of 1603 patients attending for endoscopy was used for identification of risk factors to develop a risk prediction model. Factors associated with BE in the univariate analysis were selected to develop prediction models that were validated in an independent, external cohort of 477 non-BE patients referred for endoscopy with symptoms of reflux or dyspepsia. Two prediction models were developed separately for columnar lined epithelium (CLE) of any length and using a stricter definition of intestinal metaplasia (IM) with segments ≥ 2 cm with areas under the ROC curves (AUC) of 0.72 (95%CI: 0.67-0.77) and 0.81 (95%CI: 0.76-0.86), respectively. The two prediction models included demographics (age, sex), symptoms (heartburn, acid reflux, chest pain, abdominal pain) and medication for "stomach" symptoms. These two models were validated in the independent cohort with AUCs of 0.61 (95%CI: 0.54-0.68) and 0.64 (95%CI: 0.52-0.77) for CLE and IM ≥ 2 cm, respectively. CONCLUSIONS: We have identified and validated two prediction models for CLE and IM ≥ 2 cm. Both models have fair prediction accuracies and can select out around 20% of individuals unlikely to benefit from investigation for Barrett's esophagus. Such prediction models have the potential to generate useful cost-savings for BE screening among the symptomatic population

    Molecular effects of Lapatinib in the treatment of HER2 overexpressing oesophago-gastric adenocarcinoma.

    Get PDF
    BACKGROUND: Lapatinib, a dual EGFR and HER2 inhibitor has shown disappointing results in clinical trials of metastatic oesophago-gastric adenocarcinomas (OGAs), and in vitro studies suggest that MET, IGFR, and HER3 confer resistance. This trial applied Lapatinib in the curative neoadjuvant setting and investigated the feasibility and utility of additional endoscopy and biopsy for assessment of resistance mechanisms ex vivo and in vivo. METHODS: Patients with HER2 overexpressing OGA were treated for 10 days with Lapatinib monotherapy, and then in combination with three cycles of Oxaliplatin and Capecitabine before surgery. Endoscopic samples were taken for molecular analysis at: baseline including for ex vivo culture +/- Lapatinib to predict in vivo response, post-Lapatinib monotherapy and at surgery. Immunohistochemistry (IHC) and proteomic analysis was performed to assess cell kinetics and signalling activity. RESULTS: The trial closed early (n=10) due to an anastomotic leak in two patients for which a causative effect of Lapatinib could not be excluded. The reduction in Phosphorylated-HER2 (P-HER2) and P-EGFR in the ex vivo-treated biopsy demonstrated good correlation with the in vivo response at day 10. Proteomic analysis pre and post-Lapatinib demonstrated target inhibition (P-ERBB2, P-EGFR, P-PI3K, P-AKT, and P-ERK) that persisted until surgery. There was also significant correlation between the activation of MET with the level of P-Erk (P=0.0005) and P-PI3K : T-PI3K (total PI3K) ratio (P=0.0037). There was no significant correlation between the activation status of IGFR and HER3 with downstream signalling molecules. CONCLUSIONS: Additional endoscopy and biopsy sampling for multiple biomarker endpoints was feasible and confirmed in vitro data that MET is likely to be a significant mechanism of Lapatinib resistance in vivo.This research was funded by the Medical Research Council [Grant SK002].This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/bjc.2015.34
    • …
    corecore