3 research outputs found

    Oxidation and Reduction Dual-Responsive Polymeric Prodrug Micelles Co-delivery Precisely Prescribed Paclitaxel and Honokiol for Laryngeal Carcinoma Combination Therapy

    Get PDF
    Laryngeal carcinoma is the most common head and neck malignancy globally, and chemotherapy is still the most common treatment for this type of carcinoma. Monotherapy has become powerless because of the lack of drugs in the anticancer agent library, the difficult process of new drug discovery, and the widespread drug resistance. Combination therapy with two agents, in particular Chinese herbal medicines with chemotherapy drugs, is a potential alternative to chemotherapy alone. However, combination therapy faces difficulties in delivering multiple drugs to tumor tissue in a precise ratio. Here, a cocktail polymeric prodrug micelle (PHPPM) was developed using an oxidation and reduction dual-responsive polymeric paclitaxel (PTX) and polymeric honokiol (HK) prodrugs. Both of them were obtained by covalently conjugating the drug to dextran via diselenium bonds. Following optimization and characterization, the PHPPM with the precise mass ratio of PTX and HK was obtained, enabling ratiometric drug loading, synchronized drug release in response to tumor high-level reactive oxygen species and glutathione environment, long blood circulation, and high tumor accumulation. This co-delivery system can effectively inhibit laryngeal carcinoma growth in vitro and in vivo. Codelivery of chemotherapy agents and Chinese herbal medicine with a precise ratio and controlled release of the two drugs at the tumor site provides an effective approach to clinical therapy for other laryngeal carcinomas

    Research on Assembly Method of Threaded Fasteners Based on Visual and Force Information

    No full text
    Threaded fastening operations are widely used in assembly and are typically time-consuming and costly. In low-volume, high-value manufacturing, fastening operations are carried out manually by skilled workers. The existing approaches are found to be less flexible and robust for performing assembly in a less structured industrial environment. This paper introduces a novel algorithm for detecting the position and orientation of threaded holes and a new method for tightening bolts. First, the elliptic arc fitting method and the three-point method are used to estimate the initial position and orientation of the threaded hole, and the force impact caused by switching from the free space to the constrained space during bolt tightening is solved. Second, by monitoring the deformation of passive compliance, the position information is introduced into the control process to better control the radial force between the bolt and the threaded hole in the tightening process. The constant force controller and orientation compliance controller are designed according to the adaptive control theory. A series of experiments are carried out. The results show that the proposed method can estimate the initial position and orientation of an M24 bolt with an average position error of 0.36 mm, 0.43 mm and 0.46 mm and an orientation error of 0.65°, 0.46° and 0.59°, and it can tighten the bolt with a success rate of 98.5%
    corecore