673 research outputs found

    Activity cycles in members of young loose stellar associations

    Get PDF
    Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length PcycP_{ cyc} of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between PcycP_{ cyc} and ProtP_{ rot} suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient rSr_{ S} between PcycP_{ cyc}, and different stellar parameters. We found that PcycP_{ cyc} is uncorrelated with all the investigated parameters. The index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale τdiff\tau_{ diff}, and the dynamo number DND_{ N}, whereas it is anti-correlated with the effective temperature TeffT_{ eff}, the photometric shear ΔΩphot\Delta\Omega_{\rm phot} and the radius RCR_{ C} at which the convective zone is located. We found that PcycP_{ cyc} is about constant and that decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc=16.78±2yrP_{ cyc} = 16.78 \pm 2 \rm yr.Comment: 19 pages , 15 figures, accepte

    Evidence of New Magnetic Transitions in Late-Type Dwarfs from Gaia DR2

    Get PDF
    The second Gaia data release contains the identification of 147 535 low-mass (≀1.4M⊙\le 1.4 M_{\odot}) rotational modulation variable candidates on (or close to) the main sequence, together with their rotation period and modulation amplitude. The richness, the period and amplitude range, and the photometric precision of this sample make it possible to unveil, for the first time, signatures of different surface inhomogeneity regimes in the amplitude-period density diagram. The modulation amplitude distribution shows a clear bimodality, with an evident gap at periods P≀2P \le 2 d. The low amplitude branch, in turn, shows a period bimodality with a main clustering at periods P≈P \approx 5 - 10 d and a secondary clustering of ultra-fast rotators at P≀0.5P \le 0.5 d. The amplitude-period multimodality is correlated with the position in the period-absolute magnitude (or period-color) diagram, with the low- and high-amplitude stars occupying different preferential locations. Here we argue that such a multimodality represents a further evidence of the existence of different regimes of surface inhomogeneities in young and middle-age low-mass stars and we lay out possible scenarios for their evolution, which manifestly include rapid transitions from one regime to another. In particular, the data indicate that stars spinning up close to break-up velocity undergo a very rapid change in their surface inhomogeneities configuration, which is revealed here for the first time. The multimodality can be exploited to identify field stars of age ∌\sim 100 -- 600 Myr belonging to the slow-rotator low-amplitude sequence, for which age can be estimated from the rotation period via gyrochronology relationships.Comment: 15 pages, 6 figures, Accepted by Ap

    Lower limit for differential rotation in members of young loose stellar associations

    Get PDF
    Surface differential rotation (SDR) plays a key role in dynamo models. SDR estimates are therefore essential for constraining theoretical models. We measure a lower limit to SDR in a sample of solar-like stars belonging to young associations with the aim of investigating how SDR depends on global stellar parameters in the age range (4-95 Myr). The rotation period of a solar-like star can be recovered by analyzing the flux modulation caused by dark spots and stellar rotation. The SDR and the latitude migration of dark-spots induce a modulation of the detected rotation period. We employ long-term photometry to measure the amplitude of such a modulation and to compute the quantity DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that DeltaOmega_phot increases with the stellar effective temperature and with the global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This power law is less steep than those found by previous authors, but closest to recent theoretical models. We find that DeltaOmega_phot steeply increases between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1 M_sun star. We find also that the relative shear increases with the Rossby number Ro. Although our results are qualitatively in agreement with hydrodynamical mean-field models, our measurements are systematically higher than the values predicted by these models. The discrepancy between DeltaOmega_phot measurements and theoretical models is particularly large in stars with periods between 0.7 and 2 d. Such a discrepancy, together with the anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d), suggests that the rotation period could influence SDR more than predicted by the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic

    Doppler imaging of the young late-type star LO Pegasi (BD +22 4409) in September 2003

    Full text link
    A Doppler image of the ZAMS late-type rapidly rotating star LO Pegasi, based on spectra acquired between 12 and 15 September 2003, is presented. The Least Square Deconvolution technique is applied to enhance the signal-to-noise ratio of the mean rotational broadened line profiles extracted from the observed spectra. In the present application, a unbroadened spectrum is used as a reference, instead of a simple line list, to improve the deconvolution technique applied to extract the mean profiles. The reconstructed image is similar to those previously obtained from observations taken in 1993 and 1998, and shows that LO Peg photospheric activity is dominated by high-latitude spots with a non-uniform polar cap. The latter seems to be a persistent feature as it has been observed since 1993 with little modifications. Small spots, observed between ~ 10 and ~ 60 degrees of latitude, appears to be different with respect to those present in the 1993 and 1998 maps.Comment: 21 pages, 10 figures, accepted by Monthly Notices of the Royal Astronomical Societ

    Constraining the extra heating of the Diffuse Ionized Gas in the Milky Way

    Full text link
    The detailed observations of the diffuse ionized gas through the emission lines Hα\alpha, [NII], and [SII] in the Perseus Arm of our Galaxy by the Wisconsin Hα\alpha Mapper (WHAM)--survey challenge photoionization models. They have to explain the observed rise in the line ratios [NII]/Hα\alpha and [SII]/Hα\alpha. The models described here consider for the first time the detailed observational geometry toward the Perseus Arm. The models address the vertical variation of the line ratios up to height of 2 kpc above the midplane. The rising trends of the line ratios are matched. The increase in the line ratios is reflected in a rise of the temperature of the gas layer. This is due to the progressive hardening of the radiation going through the gas. However an extra heating above photoionization is needed to explain the absolute values. Two different extra heating rates are investigated which are proportional to n0n^0 and n1n^1. The models show that a combination of both are best to explain the data, where the extra heating independent of density is dominant for z >> 0.8 kpc.Comment: accepted for publication in Ap

    ADAS analysis of the differential emission measure structure of the inner solar corona. II. A study of the `quiet Sun' inhomogeneities from SOHO CDS-NIS spectra

    Full text link
    We present a study of the differential emission measure (DEM) of a `quiet Sun' area observed in the extreme ultraviolet at normal incidence by the Coronal Diagnostic Spectrometer (CDS) on the SOHO spacecraft. The data used for this work were taken using the NISAT_S observing sequence. This takes the full wavelength ranges from both the NIS channels (308-381 Angtr. and 513-633 Angst.) with the 2 arcsec by 240 arcsec slit, which is the narrowest slit available, yielding the best spectral resolution. In this work we contrast the DEM from subregions of 2 by 80 arcsec2^2 with that obtained from the mean spectrum of the whole raster (20 by 240 arcsec2^2). We find that the DEM maintains essentially the same shape in the subregions, differing by a constant factor between 0.5 and 2 from the mean DEM, except in areas were the electron density is below 2×1072 \times 10^7 cm−3^{-3} and downflow velocities of 50 km/s are found in the transition region. Such areas are likely to contain plasma departing from ionisation equilibrium, violating the basic assumptions underlying the DEM method. The comparison between lines of Li-like and Be-like ions may provide further evidence of departure from ionisation equilibrium. We find also that line intensities tend to be lower where velocities of the order of 30 km/s or higher are measured in transition region lines. The DEM analysis is also exploited to improve the line identification performed by Brooks et al (1999) and to investigate possible elemental abundance variations from region to region. We find that the plasma has composition close to photospheric in all the subregions examined.Comment: 18 pages, 9 figures, 7 tables. Table 5 is available only online. A copy of Table 5 can be found at http://webusers.ct.astro.it/acl/table5.dat. The ReadMe file is at http://webusers.ct.astro.it/acl/ReadMe. Accepted by Astronomy and Astrophysic

    The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M8)

    Get PDF
    We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the associated star cluster NGC6530. We characterize through spectral fitting emission lines of H-alpha, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES/Giraffe and UVES spectrographs, on more than 1000 sightlines towards the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from H-alpha/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M8East-IR. The origins of kinematical expansion and ionization of the NGC6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines.Comment: 26 pages, 31 figures, accepted on Astronomy and Astrophysics journa
    • 

    corecore