486 research outputs found

    Mitochondrial Function as a Determinant of Life Span

    Get PDF
    Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion

    Genome-Wide Analysis of the Response of Dickeya dadantii 3937 to Plant Antimicrobial Peptides

    Get PDF
    Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial pep- tides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts

    Plerixafor for autologous peripheral blood stem cell mobilization in patients previously treated with fludarabine or lenalidomide.

    Get PDF
    Fludarabine and lenalidomide are essential drugs in the front-line treatment of non-Hodgkin lymphoma (NHL) and multiple myeloma (MM), respectively. Data suggests that fludarabine and lenalidomide therapy may have a deleterious effect on stem cell mobilization. In the European compassionate use program, 48 patients (median age 57 years) previously treated with fludarabine (median 5 cycles; range: 1-7 cycles) were given plerixafor plus granulocyte colony-stimulating factor (G-CSF) for remobilization following a primary mobilization attempt. The overall median number of CD34+ cells collected was 2.3 × 10(6)/kg (range: 0.3-13.4). The minimum required number of CD34+ cells (≥2.0 × 10(6)/kg) was collected from 58% of patients in a median of 2 days. Thirty-five patients (median age = 57 years) previously treated with lenalidomide (median 5 cycles; range: 1-10 cycles) were given plerixafor plus G-CSF for remobilization. The overall median number of CD34+ cells collected was 3.4 × 10(6)/kg (range: 1.1-14.8). The minimum required number of CD34+ cells (≥2.0 × 10(6) per kg) was collected from 69% of patients in a median of 2 days. In conclusion, salvage mobilization with plerixafor plus G-CSF is successful in the majority of patients with MM previously treated with lenalidomide. In fludarabine-exposed patients, only 58% of patients will achieve successful salvage mobilization with plerixafor plus G-CSF, suggesting the need for novel mobilization regimens algorithms in this subgroup of patients

    High-Fat Diet with Acyl-Ghrelin Treatment Leads to Weight Gain with Low Inflammation, High Oxidative Capacity and Normal Triglycerides in Rat Muscle

    Get PDF
    Obesity is associated with muscle lipid accumulation. Experimental models suggest that inflammatory cytokines, low mitochondrial oxidative capacity and paradoxically high insulin signaling activation favor this alteration. The gastric orexigenic hormone acylated ghrelin (A-Ghr) has antiinflammatory effects in vitro and it lowers muscle triglycerides while modulating mitochondrial oxidative capacity in lean rodents. We tested the hypothesis that A-Ghr treatment in high-fat feeding results in a model of weight gain characterized by low muscle inflammation and triglycerides with high muscle mitochondrial oxidative capacity. A-Ghr at a non-orexigenic dose (HFG: twice-daily 200-µg s.c.) or saline (HF) were administered for 4 days to rats fed a high-fat diet for one month. Compared to lean control (C) HF had higher body weight and plasma free fatty acids (FFA), and HFG partially prevented FFA elevation (P<0.05). HFG also had the lowest muscle inflammation (nuclear NFkB, tissue TNF-alpha) with mitochondrial enzyme activities higher than C (P<0.05 vs C, P = NS vs HF). Under these conditions HFG prevented the HF-associated muscle triglyceride accumulation (P<0.05). The above effects were independent of changes in redox state (total-oxidized glutathione, glutathione peroxidase activity) and were not associated with changes in phosphorylation of AKT and selected AKT targets. Ghrelin administration following high-fat feeding results in a novel model of weight gain with low inflammation, high mitochondrial enzyme activities and normalized triglycerides in skeletal muscle. These effects are independent of changes in tissue redox state and insulin signaling, and they suggest a potential positive metabolic impact of ghrelin in fat-induced obesity

    Mitochondrial function as a determinant of life span

    Get PDF
    Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion

    Quantitative Metabolomics by 1H-NMR and LC-MS/MS Confirms Altered Metabolic Pathways in Diabetes

    Get PDF
    Insulin is as a major postprandial hormone with profound effects on carbohydrate, fat, and protein metabolism. In the absence of exogenous insulin, patients with type 1 diabetes exhibit a variety of metabolic abnormalities including hyperglycemia, glycosurea, accelerated ketogenesis, and muscle wasting due to increased proteolysis. We analyzed plasma from type 1 diabetic (T1D) humans during insulin treatment (I+) and acute insulin deprivation (I-) and non-diabetic participants (ND) by 1H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. The aim was to determine if this combination of analytical methods could provide information on metabolic pathways known to be altered by insulin deficiency. Multivariate statistics differentiated proton spectra from I- and I+ based on several derived plasma metabolites that were elevated during insulin deprivation (lactate, acetate, allantoin, ketones). Mass spectrometry revealed significant perturbations in levels of plasma amino acids and amino acid metabolites during insulin deprivation. Further analysis of metabolite levels measured by the two analytical techniques indicates several known metabolic pathways that are perturbed in T1D (I-) (protein synthesis and breakdown, gluconeogenesis, ketogenesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress). This work demonstrates the promise of combining multiple analytical methods with advanced statistical methods in quantitative metabolomics research, which we have applied to the clinical situation of acute insulin deprivation in T1D to reflect the numerous metabolic pathways known to be affected by insulin deficiency

    Maternal Postpartum Distress and Childhood Overweight

    Get PDF
    OBJECTIVE: We investigated associations between maternal postpartum distress covering anxiety, depression and stress and childhood overweight. METHODS: We performed a prospective cohort study, including 21,121 mother-child-dyads from the Danish National Birth Cohort (DNBC). Maternal distress was measured 6 months postpartum by 9 items covering anxiety, depression and stress. Outcome was childhood overweight at 7-years-of age. Multiple logistic regression analyses were performed and information on maternal age, socioeconomic status, pre-pregnancy BMI, gestational weight gain, parity, smoking during pregnancy, paternal BMI, birth weight, gestational age at birth, sex, breastfeeding and finally infant weight at 5 and 12 month were included in the analyses. RESULTS: We found, that postpartum distress was not associated with childhood risk of overweight, OR 1.00, 95%CI [0.98-1.02]. Neither was anxiety, depression, or stress exposure, separately. There were no significant differences between the genders. Adjustment for potential confounders did not alter the results. CONCLUSION: Maternal postpartum distress is apparently not an independent risk factor for childhood overweight at 7-years-of-age. However, we can confirm previous findings of perinatal determinants as high maternal pre-pregnancy BMI, and smoking during pregnancy being risk factors for childhood overweight

    Optimal management of asymptomatic carotid stenosis in 2021: the jury is still out. An International, multispecialty, expert review and position statement

    Get PDF
    Objectives: The recommendations of international guidelines for the management of asymptomatic carotid stenosis (ACS) often vary considerably and extend from a conservative approach with risk factor modification and best medical treatment (BMT) alone, to a more aggressive approach with a carotid intervention plus BMT. The aim of the current multispecialty position statement is to reconcile the conflicting views on the topic. Materials and methods: A literature review was performed with a focus on data from recent studies. Results: Several clinical and imaging high-risk features have been identified that are associated with an increased long-term ipsilateral ischemic stroke risk in patients with ACS. Such high-risk clinical/imaging features include intraplaque hemorrhage, impaired cerebrovascular reserve, carotid plaque echolucency/ulceration/ neovascularization, a lipid-rich necrotic core, a thin or ruptured fibrous cap, silent brain infarction, a contralateral transient ischemic attack/stroke episode, male patients <75 years and microembolic signals on transcranial Doppler. There is growing evidence that 80-99% ACS indicate a higher stroke risk than 50-79% stenoses. Conclusions: Although aggressive risk factor control and BMT should be implemented in all ACS patients, several high-risk features that may increase the risk of a future cerebrovascular event are now documented. Consequently, some guidelines recommend a prophylactic carotid intervention in high-risk patients to prevent future cerebrovascular events. Until the results of the much-anticipated randomized controlled trials emerge, the jury is still out regarding the optimal management of ACS patients

    Optimal Management of Asymptomatic Carotid Stenosis in 2021:The Jury is Still Out. An International, Multispecialty, Expert Review and Position Statement

    Get PDF
    Objectives: The recommendations of international guidelines for the management of asymptomatic carotid stenosis (ACS) often vary considerably and extend from a conservative approach with risk factor modification and best medical treatment (BMT) alone, to a more aggressive approach with a carotid intervention plus BMT. The aim of the current multispecialty position statement is to reconcile the conflicting views on the topic. Materials and methods: A literature review was performed with a focus on data from recent studies. Results: Several clinical and imaging high-risk features have been identified that are associated with an increased long-term ipsilateral ischemic stroke risk in patients with ACS. Such high-risk clinical/imaging features include intraplaque hemorrhage, impaired cerebrovascular reserve, carotid plaque echolucency/ulceration/ neovascularization, a lipid-rich necrotic core, a thin or ruptured fibrous cap, silent brain infarction, a contralateral transient ischemic attack/stroke episode, male patients < 75 years and microembolic signals on transcranial Doppler. There is growing evidence that 80–99% ACS indicate a higher stroke risk than 50–79% stenoses. Conclusions: Although aggressive risk factor control and BMT should be implemented in all ACS patients, several high-risk features that may increase the risk of a future cerebrovascular event are now documented. Consequently, some guidelines recommend a prophylactic carotid intervention in high-risk patients to prevent future cerebrovascular events. Until the results of the much-anticipated randomized controlled trials emerge, the jury is still out regarding the optimal management of ACS patients

    Activation of Peroxisome Proliferator-Activated Receptor Gamma by Rosiglitazone Increases Sirt6 Expression and Ameliorates Hepatic Steatosis in Rats

    Get PDF
    Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis
    corecore