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Abstract Average human life expectancy has progressively
increased over many decades largely due to improvements
in nutrition, vaccination, antimicrobial agents, and effective
treatment/prevention of cardiovascular disease, cancer, etc.
Maximal life span, in contrast, has changed very little.
Caloric restriction (CR) increases maximal life span in
many species, in concert with improvements in mitochon-
drial function. These effects have yet to be demonstrated in
humans, and the duration and level of CR required to ex-
tend life span in animals is not realistic in humans. Physical
activity (voluntary exercise) continues to hold much prom-
ise for increasing healthy life expectancy in humans, but
remains to show any impact to increase maximal life span.
However, longevity in Caenorhabditis elegans is related to
activity levels, possibly through maintenance of mitochon-
drial function throughout the life span. In humans, we
reported a progressive decline in muscle mitochondrial
DNA abundance and protein synthesis with age. Other
investigators also noted age-related declines in muscle
mitochondrial function, which are related to peak oxygen
uptake. Long-term aerobic exercise largely prevented age-
related declines in mitochondrial DNA abundance and
function in humans and may increase spontaneous activity
levels in mice. Notwithstanding, the impact of aerobic
exercise and activity levels on maximal life span is

uncertain. It is proposed that age-related declines in
mitochondrial content and function not only affect physical
function, but also play a major role in regulation of life
span. Regular aerobic exercise and prevention of adiposity
by healthy diet may increase healthy life expectancy and
prolong life span through beneficial effects at the level of the
mitochondrion.

Keywords Mitochondria . Obesity . Aging .

Cellular response . Cell death

Introduction

The question of how and why we age continues to puzzle
biologists in spite of important advances in our understand-
ing of underlying molecular and cellular mechanisms.
Postreproductive life makes little sense if one accepts the
view that the purpose of life is to spawn and carry forward
a lineage to promote the long-term survival of the species.
According to the above view, aging is an essential process
to cull organisms that are not capable of reproduction and
would sap resources that could otherwise be available to
reproducing progeny. In contradiction to the above view,
women have longer life span than men in spite of a
definitive cessation of reproductive capacity by approxi-
mately 50 years of age. In contrast, men live shorter lives
although their reproductive age outlasts that of women. One
also could pose the following question: Why have billions
of years of evolution not selected for longer reproductive
phases and therefore longer life spans? Again from an
evolutionary perspective, it seems advantageous for a
species to have relatively short periods for reproduction,
followed by death, to allow for more rapid selection of
beneficial traits compared to a long-lived organism, which
would continue to pass along its genetic code and slow the
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process of selection. Most humans, even after fulfilling our
obligation and capacity for reproduction, have want to
continue living. The average life expectancy of humans has
increased remarkably over the past 100 years, largely as a
result of advances in modern medicine for treatment of
diseases such as diabetes, cancer, and cardiovascular
disease. Thus, although human interventions to improve
health resulted in avoidance of premature deaths of humans
and extended the life expectancy, the maximum life span of
humans has changed very little. It seems that we are, at this
point, helpless to many deleterious cellular changes that
ultimately lead to a senescent phenotype and eventually
death. The whimsical notion of cheating the aging process
has spawned an enormous amount of research aimed at
understanding the mechanisms of cellular aging. It is
doubtful that any single process could entirely account for
the emergence of the senescent phenotype, but the purpose
of this review is to highlight substantial evidence to impli-
cate the mitochondrion as a major factor in this process.

A leading hypothesis of aging is based on free radical
theory of aging by Harman [1]. Harman argued that
oxygen-free radicals (reactive oxygen species) produced
during normal cellular respiration would cause cumulative
damage to molecules which would eventually lead to
organismal loss of functionality and ultimately, death. Since
free radicals or reactive oxygen species are produced in
mitochondria during electron transport, substantial attention
has been focused on mitochondria and aging.

Overview of mitochondrial physiology

The modern day mitochondrion is believed to have evolved
over a billion or more years, originating as an invading

Eubacterium in early eukaryotic cells. Of the 1,000 or so
mitochondrial proteins, only 13 are encoded by the
mitochondrial genome while the remainder are transcribed
and translated from the nuclear genome and transported
into inner mitochondrial membrane [2]. Over time, the cell
has come to rely on mitochondria to maintain energetic
homeostasis. Indeed, these organelles are a major source of
chemical energy in the form of adenosine triphosphate
(ATP), which is required to fuel many thermodynamically
unfavorable processes within cells (e.g., ion transport
against electrochemical gradients, protein synthesis, and
contractility). The process of mitochondrial oxidative
phosphorylation is responsible for conversion of macronu-
trient energy to ATP through a set of exquisitely coupled
and coordinated reactions where macronutrients are oxi-
dized (e.g., glucose, fatty acids, and amino acids), oxygen
is reduced to water, and adenosine diphosphate (ADP) is
phosphorylated to ATP (Fig. 1). The process begins when
carbon substrates enter the tricarboxylic acid cycle either
through acetyl CoA or anaplerotic reactions. Oxidation of
these substrates generates reducing equivalents in the form
of NADH and FADH2, which provide electron flow though
respiratory chain complexes I (NADH dehydrogenase) and
II (succinate dehydrogenase), respectively. Electron flow
through complexes I and II converges on complex III
(ubiquinone–cytochrome c reductase), along with electrons
shuttled in from electron transferring flavoproteins (beta
oxidation), though the mobile electron carrier coenzyme Q.
A second mobile electron carrier transfers electrons on to
complex IV (cytochrome c oxidase) where they are finally
transferred to oxygen, yielding water. A proton gradient
across the inner mitochondrial membrane is generated by
the action of electron transport through complexes I, III,
and IV. The potential energy of this gradient is harnessed by

Fig. 1 ADP is phosphorylated
to ATP at complex V (ATP
synthase) at the expense of the
proton gradient maintained as
electrons are passed from re-
ducing equivalents (NADH,
FADH2) to cytochromes along
the inner mitochondrial mem-
brane. These reducing equiva-
lents are generated as carbon
substrates are oxidized in the
tricarboxylic acid cycle (TCA).
Single electrons interact with
molecular oxygen at complexes
I and III to generate the super-
oxide radical (O2

•). The sequen-
tial actions of superoxide
dismutase (SOD) and catalase
convert superoxide into oxygen
and water
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complex V (ATP synthase) to phosphorylate ADP to ATP.
Thus, the maintenance of the mitochondrial membrane
potential by electron transport is critical to proper function
of the organelle, and therefore, the cell.

Evidence of altered mitochondrial function with aging

The role of mitochondria in the aging process has been a
topic of intense interest for many years. In humans, studies
have focused largely on skeletal muscle because it is a
postmitotic tissue, tissue samples are relatively easy to
acquire, and it is a determinant of physical function which
is known to decline dramatically with aging [3, 4]. Skeletal
muscle is also a highly metabolically active tissue,
accounting for roughly 65% of glucose disposal following
a meal and vital for peripheral glucose disposal. Age-
related changes in mitochondrial content and function are
well documented. Electron microscopy has been used to
demonstrate that mitochondrial volume density decreases
with aging in skeletal muscle [5]. Less abundant mitochon-
dria would logically lead to decreased capacity for
oxidative phosphorylation. Indeed, we find that the maxi-
mal rate of mitochondrial ATP synthesis declined over the
life span, measured by recombinant firefly luciferase in the
presence of ADP and substrate combinations specific to
distinct respiratory chain enzymes [6]. Mitochondrial
oxidative capacity decreased by about 8% per decade using
substrates providing electron flow into complex I, complex
II, and electron-transferring flavoprotein [6]. Since these
rates were expressed relative to tissue mass, the age-related
decline in mitochondrial capacity may reflect reduced
content of the organelle in skeletal muscle. However, when
ATP production rates were expressed per unit of mitochon-
drial protein, which accounts for differences in mitochon-
drial content, there were persisting age effects (5% per
decade). Thus, the effects of age on mitochondrial function
are compounded by reduced mitochondrial content as well
as impaired intrinsic activity of the mitochondrial machin-
ery [6]. Polarographic-based measurements of mitochon-
drial function are generally in agreement with the concept
that mitochondrial function declines with aging [7, 8],
although some reports show that the effects of old age are
more modest [9]. These types of in vitro measurements in
isolated mitochondria permit functional assessment of
distinct levels of the respiratory chain and tricarboxylic
acid cycle, however, in vivo assessment of mitochondrial
function by magnetic resonance spectroscopy is advanta-
geous from a standpoint of physiological relevance (intact
circulatory and regulatory systems). Numerous in vivo
studies also find that oxidative capacity is reduced in older
adults [5, 10, 11], although several others find that
oxidative capacity is similar in young and older adults with

similar physical activity levels [12–15]. The importance of
physical (in)activity as a determinant of the aging pheno-
type will be discussed later.

In an effort to understand the mechanisms responsible
for this age-related decline in mitochondrial function,
numerous investigators have examined various molecular
and cellular disturbances with aging. Age-related changes
at multiple levels between the expression of genes and the
assembly of the functional organelle appear to be respon-
sible for the overall decline in mitochondrial function.
Aging affects the expression of genes encoding mitochon-
drial proteins, evidenced by decreased messenger RNA
(mRNA) transcript levels [6, 16–18], possibly due to
reduced gene transcription or mRNA instability with aging.
Mitochondrial DNA copy number decreases with age [6,
16, 19, 20], which could account for the reduction of
mitochondrial gene transcripts and therefore, the proteins
encoded by these genes. We recently used mass spectrom-
etry to identify and quantify the expression of numerous
skeletal muscle proteins involved in fuel metabolism [6,
19]. We found aging significantly decreased the expression
of numerous nuclear and mitochondrial-encoded proteins
involved in mitochondrial function [6, 19]. Protein expres-
sion is not only affected by mRNA template availability,
but also by the rate of protein synthesis, which we find to
decline with aging [21]. Whether aging affects the synthesis
rates of mitochondrial proteins encoded by both genomes in
the same way has yet to be determined. This question is
now addressable, thanks to recent advances in measuring
the synthesis rates of individual mitochondrial proteins
[22]. Specific rates of mitochondrial protein breakdown
have yet to be measured in vivo, but observations that Lon
protease expression, a key enzyme for mitochondrial
proteolysis, is reduced in older mice suggests that mito-
chondrial protein turnover is likely to be reduced with
aging [23]. Indeed, we recently reported that whole body
proteolysis decreases with aging [24]. An overall decrease
in protein expression may result from the mismatch
between rates of protein synthesis and breakdown. Impor-
tantly, decreased protein turnover may lead to accumulation
of oxidatively damaged dysfunctional proteins, such as
protein carbonylation [25] and nitrotyrosine-modified pro-
teins [26]. Nucleic acids also demonstrate increased levels
of oxidative damage with aging [6, 27], particularly
mitochondrial DNA (mtDNA), whose susceptibility is
increased by its proximity to the source of damaging
reactive oxygen species and the lack of protection by
histones. Mitochondrial fusion and fission appear to be
critical for the maintenance of mtDNA [28], but a causal
link to aging and mtDNA damage remains in its nascent
stages [29]. There is some data to indicate that the effects of
aging on mtDNA abundance, gene expression, and the
aforementioned downstream effects may be traced back to
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alterations and mutations to portions of DNA that encode
mitochondrial proteins. Although mtDNA deletions and
point mutations increase with age based on cross-sectional
studies [30–33], the prevalence of these alterations are
generally less than 1%; a number that is far less the 50–
80% that is purported to be required to induce any
physiological effect [34]. It is important, however, to
consider that the DNA mutations that occur with aging
are widespread and inconsistent such that the frequency of
mutations may be underestimated if only a few marker
genes are assessed. Furthermore, even relatively modest
degrees of DNA mutations may be selectively amplified
[35, 36]. Using long-chain polymerase chain reaction
(PCR), several studies have shown that full-length mtDNA
is reduced with old age [37, 38]. In sum, there are multiple
factors at the levels of gene expression, protein synthesis,
protein quality, and mitochondrial dynamics that can ac-
count for reductions in mitochondrial number and function
with aging.

It is clear that mitochondrial function is altered with old
age and may underlie age-related changes in physical
function, protein synthesis, and muscle mass. A remaining
question is whether mitochondria regulate the senescent
phenotype (i.e., is mitochondrial dysfunction cause or
consequence of aging?). Although this question remains
largely unanswered, there is some evidence to directly
implicate mitochondria as a cause of cellular aging. For
example; an accelerated aging phenotype is evident in mice
with increased mtDNA mutations and genetic mitochondri-
al diseases [39–42]. The remainder of this review will
appraise evidence to suggest that mitochondria play a major
role in regulating cellular senescence.

Mitochondria and oxidants

The beneficial role of mitochondria in supplying high-
energy phosphates generally overshadows its less favorable
role in production of reactive oxygen species (ROS).
Mitochondria are responsible for the majority of cellular
ROS, although nonmitochondrial sources such as cyclo-
ogygenases, NADPH oxidase, and peroxisomes also con-
tribute a modest amount. The interaction of single electrons
with molecular oxygen results in the formation of superox-
ide anions at respiratory chain complexes I and III [42, 43].
The rate of superoxide production is generally regarded as
being equivalent to about 3% of total oxygen reduced by
cytochrome c oxidase, however, there is some evidence that
this number may be much lower [44] and that ROS
production rate is largely dependent on the mitochondrial
membrane potential (ΔΨ). A higher membrane potential
such as during state 2 or state 4 respiration would increase
the redox potential and perhaps promote backflow of

electrons through complexes I and III, whereas state 3
respiration minimizes this effect by increasing the forward
flux of electrons along the cytochromes, providing less
opportunity for generation of superoxide. Reactive oxygen
species are generally regarded as exerting deleterious
effects on vital components of cells though oxidation of
proteins, lipids, and nucleic acids. Protein modifications
may change the structure and catalytic activity of key
enzymes, lipid oxidation may alter the fluidity of the
membranes, and DNA oxidation may interfere with the
proper transcription of genes. Thus, it seems that mito-
chondria may pose a serious liability to the well-being of
the cell. Notwithstanding, the cell seems adept at with-
standing this potential threat through the action of various
antioxidant scavenging systems. Superoxide is converted to
hydrogen peroxide (H2O2) by the action of superoxide
dismutase, which is found in two forms: manganese
superoxide dismutase (SOD1) in the mitochondrial matrix
and copper–zinc superoxide dismutase (SOD2) in the
cytosol. Hydrogen peroxide is also considered a reactive
oxygen species and is further deactivated by one of three
enzymes (catalase, glutathione peroxidase, and peroxire-
doxins) [43]. These antioxidant enzyme systems allow the
cell to reap the energenic benefits of mitochondria while
minimizing the potentially damaging effects of ROS,
provided that the buffering capacity is greater than or equal
to the rate of ROS production. However, some degree of
oxidative damage is likely even with sufficient antioxidant
systems, particularly in mitochondrial proteins, lipids, and
DNA that are proximal to the source of superoxide.
Furthermore, mitochondrial DNA, unlike nuclear DNA, is
not afforded the protection of histones making it more
susceptible to the damaging effects of ROS. Indeed, the
mutation rate of mtDNA is nearly 20-fold higher than
nuclear DNA [45].

With amazing prescience and little supporting evidence,
Harman put forth the “free radical theory of aging” that
implicated free radicals in the aging process and associated
deleterious effects [46]. Harman drew inspiration from a
notion that life span is an inverse function of metabolic rate,
which is proportional to oxygen consumption, and that
hyperbaric oxygen toxicity and radiation toxicity could be
explained by the same underlying phenomenon: oxygen
free radicals. There is some uncertainty concerning the
relevance of reactive oxygen species to the aging process.
Levels of damaged DNA, evident from increased levels of
8-oxo-2′-deoxyguanosine, increase with aging in skeletal
muscle [6] and brain tissue [47], both of which are mostly
postmitotic. Skeletal muscle from older humans also
exhibits higher levels of oxidation to proteins (carbonyla-
tion) and lipids (peroxidation) [48]. A link between cellular
ROS and life span is suggested from studies where oxidant
scavenging systems are either enhanced or decreased. Life
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span of cultured fibroblasts increases in the presence of
elevated superoxide dismutase [49]. Similarly, overexpres-
sion of superoxide dismutase and catalase significantly
prolongs the life span of drosophila [50, 51]. It is, however,
important to point out that this effect could not be
reproduced in longer-lived strains of the fly [52]. Further,
supporting evidence comes from long-lived AGE-1 mutants
of the nematode worm Caenorhabditis elegans. Life span
extension in these worms is accompanied by higher than
normal expression of SOD and catalase [53, 54]. Although
it seems that enhancing the antioxidant buffering capacity
extends life span in several species, the reverse is not
always true (i.e., decreasing ROS scavenging systems does
not shorten life span). Although RNAi knockdown of SOD
accelerates aging in human fibroblasts [55], life span is not
significantly altered in mice with knockouts of glutathione
peroxidase, SOD1, or SOD2 [56–58]. The link between
aging and cellular ROS primarily stems from their potential
damaging effects on proteins, nucleic acids, and lipids, but
there is intriguing evidence that ROS may also act on a
number of signaling pathways involved in development
(GTPase Ras), aging, and cell stress (JNK, p38, p53; see
[43] for review).

Regardless of the effects of artificially altering ROS
scavenging systems, it is clear that the senescent phenotype
is characterized by evidence of ROS-induced damage to
vital cellular components. The balance between the pro-
duction and scavenging of ROS ultimately determines the
overall level of oxidative stress to the organism. The current
opinion seems to favor the notion that aging is accompa-
nied by an increase in ROS production rather than
decreased antioxidant enzyme systems. Although SOD2
activity decreases with age in humans [59], both SOD1 and
catalase activities have been shown to increase with age in
skeletal muscle [37, 59, 60]. These studies cast doubt on the
notion that age-related oxidative stress could result from
blunted oxidant scavenging capacity and suggest that
upregulation of multiple oxidant buffering systems with
age may represent an adaptive response to elevated ROS
production. Given that the overwhelming majority of
cellular ROS are of mitochondrial origin, it is reasonable
to posit that some age-related derangement to mitochondrial
physiology may be to blame for elevated ROS production.

Can a link be established between elevated ROS
production and mitochondrial dysfunction with aging?
The commensurate increase in cellular markers of oxidative
damage and decreased respiratory chain function with age
seem at odds with the “rate of living hypothesis,” which
posits that longevity and metabolic rate are inversely
related. Based on that theory and the notion of tight
stoichiometry between oxygen consumption and superoxide
production, one could predict that age-related declines in
mitochondrial function may actually reduce the production

superoxide anions. However, the rate of living hypothesis
has fallen by the wayside in favor of a more contemporary
view of ROS production being controlled by several factors
including (1) the redox potential for donating a single
electron to oxygen, (2) the redox potential of electron
donors at various points along the cytochrome chain, and
(3) cellular oxygen tension [43]. In short, altering the redox
potential to a more reduced state without a corresponding
increase in phosphorylation (i.e., state 4 respiration) would
increase the mitochondrial membrane potential, promote
backflow of electrons, and increase the production of ROS.
Based on this logic, dissipation of the ΔΨ by allowing
proton leakage in the absence of ADP phosphorylation (i.e.,
upcoupling) should decrease ROS production [61]. This
concept was first illustrated in isolated mitochondria that
were treated with chemical uncouplers [62]. These mito-
chondria exhibited decreased ROS production when ΔΨ
was decreased by uncoupling. In nature, a class of proteins
known as uncoupling proteins (UCPs) appears to play an
important role in the process of uncoupling, with homologs
UCP1 expressed in brown adipose tissue mitochondria and
UCP2 and UCP3 in skeletal muscle [63]. Similar to the
effects of uncoupling in isolated mitochondria, UCP3
knockout mice exhibit increased markers of oxidative stress
[64, 65], consistent with the notion that mitochondrial
coupling is a major determinant of ROS production.

The importance of mitochondrial membrane potential
and modulators such as UCPs has prompted some inves-
tigators to pursue the idea that mitochondrial coupling,
rather than capacity, may be a key determinant of cellular
aging through an influence on ROS production. A recent
study in humans used a combination of in vivo methods to
assess mitochondrial coupling in skeletal muscles of young
and older humans [10]. The first dorsal interosseus muscle
was highly coupled but exhibited an age-related decline in
mitochondrial function and myocellular ATP concentra-
tions. In contrast, the tibalis anterior muscle exhibited mild
uncoupling and exhibited no evidence of age-related
mitochondrial dysfunction. The authors proposed that mild
mitochondrial uncoupling partially dissipates the mitochon-
drial membrane potential, reduces ROS production, and
helps preserve the functionality of skeletal muscle mito-
chondria [10]. Although the mechanism behind this effect
remains speculative, there is some evidence that UCP3
expression decreases with aging [66] and could be muscle
specific. Transgenic mice overexpressing UCP3 in skeletal
muscle are characterized by increased state 4 respiration,
which prevents the increase in ROS production evident
with aging in wild-type animals [67]. These and numerous
other studies have fueled the emergence of the “uncoupling
to survive” hypothesis, which suggests that dissipating the
mitochondrial membrane potential will protect cells from
the ravages of reactive oxygen species [68]. Indeed,
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survival appears to be increased in organisms that are in-
herently uncoupled. Once again, the long-lived AGE-1
mutants of C. elegans provide some valuable insight as
these worms show lower than normal mitochondrial mem-
brane potential [69] and among numerous other reports [70,
71], provide a tantalizing link between mitochondria, ROS,
and life span.

As discussed in the preceding paragraphs, much atten-
tion has been focused on oxidative stress as a determinant
of life span. Studies of naked mole rats add an interesting
twist to the free radical theory of aging. These animals are
the longest living rodents with life spans of 30 years or
longer. In spite of their longevity, naked mole rats exhibit
higher levels of lipid peroxidation, protein carbonylation,
and DNA oxidative damage than mice at comparable points
in their life span, even as young animals [72]. These data
are in sharp contrast with the theory that oxidative stress
causes senescence. Clues into the mechanisms underlying
their paradoxical longevity come from observations that
these animals have higher proteasome activity and less
protein ubiquitination, which remained remarkably constant
over two decades of life. Thus, although naked mole rats
exhibit higher than normal reversible cysteine oxidation at a
young age, these rodents appear to achieve their exception-
al longevity through increased proteolytic activity, which
maintains a functional proteome by minimizing accrual of
irreversible oxidative damage [72]. These data point to
protein homeostasis (i.e., degradation of damaged proteins
and replacement with new proteins) as a factor that can
enhance life span, even under conditions where oxidative
stress may be elevated.

Mitochondria regulate programmed cell death

Programmed cell death (i.e., apoptosis) is the end-stage of
the cell cycle when cellular structures are degraded by
proteases such as caspases and nucleases. In addition to
receptor-mediated apoptosis, this process seems to be
triggered by factors such as steroid hormones and DNA
damage. Mitochondria also play a role in regulating these
processes [73]. Cytochrome c is a mobile electron carrier
that functions to shuttle electrons from complexes I and II
to complex III and thus, plays a vital role in mitochondrial
ATP synthesis. Ironically, a protein that is so vital to life is
also a trigger for apoptosis. Under normal conditions,
cytochrome c resides within the inner mitochondrial
membrane, associated with cardiolipin, a membrane phos-
pholipid [74]. However, certain stimuli, such as DNA
damage, protein damage, or perturbation of metabolic
homeostasis, initiate the release of cytochrome c into the
cytosol which activates caspases [75]. Several factors, such
as increased cytosolic calcium and ROS, have been

proposed to weaken the interaction between cytochrome c
and its cardiolipin anchor and initiate the detachment and
mobilization of cytochrome c [76]. The outer mitochondrial
membrane is ordinarily impermeable to proteins. In fact,
addition of exogenous cytochrome c to mitochondrial
preparations is a common test for outer membrane integrity
[77]. Cytochrome c is believed to exit into the cytosol
through pores that form in a process known as mitochon-
drial outer membrane permeabilization. The exact mecha-
nisms of outer membrane permeabilization are still being
investigated, although several likely candidates have
emerged such as B-cell lymphoma protein-2, voltage-
dependent anion channels, ceramide channels, and forma-
tion of permeability transition pores (for review see [76]).
Once in the cytosol, cytochrome c initiates the formation of
apoptosomes and activation of a series of caspases that
begin the process of demolishing the cell.

The link between mitochondria and apoptosis goes
beyond caspase-dependent pathways of cellular destruction.
Apoptosis-inducing factor (AIF) is another intermembrane
flavoprotein that induces apoptosis when it is released into
the cytosol [78]. Unlike cytochrome c release, AIF induces
apoptosis through caspase-independent mechanisms. AIF
translocates to the nucleus and induces DNA fragmentation
and chromatin condensation [78]. Furthermore, a recent
study in yeast demonstrates that mitochondrial DNA
regulates nuclear genome stability [79]. Depletion of
mitochondrial DNA by aging, ethidum bromide, or genetic
mutation causes cell-cycle arrest and loss of heterozygosity
of marker genes on chromosomes IV and XII. The authors
constructed an intriguing model whereby loss of mtDNA
reduces the mitochondrial membrane potential and reduced
the biosynthesis of iron–sulfur clusters which are directly
linked with stability of the nuclear genome [79].

Programmed cell death, when properly regulated, is a
vital mechanism to regulate development, cell numbers, and
prevent the accumulation perilous tumor cells. However,
when improperly activated, apoptosis may contribute to the
demise of the organism, such as in neurons in Alzheimer's
disease [80], cardiac myocytes in myocardial infarction
[81], and skeletal muscle of HIV-infected patients [82] and
people with muscular dystrophy [83]. Given that muscle
wasting is a hallmark of senescence, it is possible that
apoptotic processes are upregulated with aging. Support for
this possibility comes from reports that aged rats exhibited
increased caspase-3 levels and elevated apoptosis compared
to young rats [84]. Although these and other findings [85,
86] implicate elevated apoptosis in the senescent pheno-
type, there is contrasting evidence to suggest otherwise.
The family of bcl2 proteins act to inhibit caspase activation
during apoptosis, but mice that do not express these
proteins appear to age normally [87], suggesting that
apoptosis may not be an important determinant of the
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aging phenotype. Furthermore, one could question whether
decreasing apoptosis would confer any beneficial effects on
life span. Apoptosis is a uniquely adapted process to
degrade distressed cells. In light of the cellular stresses
that induce apoptosis, inhibition of this process may be
detrimental to the organism unless healthy, viable cells are
being destroyed as a consequence of dysregulation of
apoptotic signaling with aging. At this point, the dysregu-
lation of apoptosis does not seem to be a candidate
mechanism underlying the finite life span of all organisms.

Countermeasures for aging

Evidence supporting a role for mitochondria, not only as
custodians of energetic homeostasis, but also as mediators
of life span and senescence, has generated an abundance of
interest in mitochondrial-targeted therapeutics to prevent,
reverse, or delay age-related detriments and perhaps extend
life span. Exercise is perhaps one of the most straightfor-
ward and effective ways to increase the content and overall
function of mitochondria. The mid-1960s marked a major
breakthrough where treadmill running in rats was shown to
increase the content and activities of key mitochondrial
proteins, which, for the first time, linked specific mito-
chondrial adaptations to increased capacity to perform
aerobic work as a result of exercise training [88]. Since
the publication of Holloszy's pioneering work, numerous
studies have touted the beneficial effects of exercise.
Endurance exercise stimulates mitochondrial biogenesis,
increases the expression and activities of mitochondrial
enzymes, and increases the overall tissue capacity for
oxidative metabolism [88–100]. Microarray analyses in
mice revealed that these exercise-induced adaptations
occurred in parallel with increased mRNA transcripts
corresponding to mitochondrial proteins encoded by the
nuclear and mitochondrial genomes [91]. Exercise training
also significantly increased mtDNA copy number in mice
[91] and humans [19]. Activation of peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) is believed to
be a major driving force in the stimulation of mitochondrial
biogenesis with exercise. Briefly, exercise increases the
activity (acute) and expression (chronic) of PGC-1α, which
stimulates transcription of nuclear-encoded mitochondrial
genes through nuclear respiratory factors (NRF-1, NRF-2)
[101] and stimulated the transcription of mitochondrial-
encoded genes through mitochondrial transcription factor A
(TFAM) [102]. During exercise, cellular signals such as
cytosolic calcium and AMP activate several protein kinases
that phosphorylate and activate PGC-1α [103]. For a
comprehensive review of the topic of cellular signaling for
mitochondrial biogenesis, the interested reader is referred to
several excellent review articles [104–106]. In addition to

expanding mitochondrial volume and increasing the capacity
for oxidative ATP synthesis, endurance exercise has also
been shown to reduce mitochondrial ROS production and
protect against mitochondrial-mediated apoptosis [107].
Others find that although exercise actually increases the
formation of ROS, the net cellular ROS load is reduced by
upregulated oxidant scavenging systems [108].

Given that many documented adaptations to endurance
exercise are the same factors that are impaired with aging,
there has been much interest in the utility of exercise to
attenuate the deterioration of mitochondrial function with
aging. Beneficial adaptations to endurance training seem to
be maintained across the life span, as evidenced by robust
increases in VO2 peak [98, 109], mitochondrial enzyme
activities [20, 98, 109], mitochondrial content [20, 110],
protein synthesis rates [111], mtDNA copy number [20],
and gene transcripts for mitochondrial proteins [98].
Studies in older rodents provides evidence that exercise
training is able to decrease ROS production [112], attenuate
DNA oxidative damage, increase the activity of DNA repair
processes [113], and increase proteasome activity to aid in
the removal of oxidatively damaged proteins [114]. In some
cases, these training adaptations in older adults seem to be
blunted in comparison to young [115, 116], but several
cross-sectional studies of masters level athletes show that
markers of muscle mitochondrial function are unchanged
with age [19, 117, 118]. Although exercise delays the onset
of many mitochondrial changes associated with aging, there
are several factors that cannot be attenuated even by
vigorous endurance exercise programs. We recently found
that chronic (more than 4 years) vigorous endurance
training (more than 5 h per week) increased mitochondrial
ATP production capacity, increased mitochondrial enzyme
activities, increased abundance of mitochondrial proteins,
and increased mtDNA abundance [19]. In spite of this high
level of physical activity, there remained substantial age-
related declines in mtDNA copy number and expression of
several mitochondrial respiratory chain proteins. Thus, it
seems that exercise can help delay the onset of many age-
related detriments, but there is a component of mitochon-
drial aging that is an inevitable function of chronological
age. The aforementioned studies of exercise adaptations
with age and other studies involving careful control of
health and physical activity patterns [9, 13–15, 117, 119]
indicate that environmental and lifestyle factors can account
for much of the aging phenotype. We proposed that
voluntary physical activities increase muscle mitochondrial
capacity which in turn enhances spontaneous activity [120].
In mice, an aerobic exercise program increased muscle
mitochondrial DNA abundance and ATP production rate
[91] which was associated with increased activity. It
appears that maintaining activity by mutation of AGE1
gene increases life span of C. elegans [121]. A similar
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phenomenon may occur in humans (Fig. 2), but remains to
be proven by experimental data. However, although
exercise seems to increase average life expectancy by
decreasing the incidence of age-related comorbidities, at
this point, there is no evidence that exercise increases
maximal life span [122–124].

At this point, the only known intervention that increases
maximal life span is restriction of caloric intake by 30–40%
of ad libitum intake [125–127]. The proposed mechanisms
underlying this extension of life span by CR involve a shift
from a state of growth and proliferation to maintenance and
repair [125–127]. Initially, CR was believed to extend life
span by decreasing metabolic rate, decreasing mitochondri-
al oxygen consumption, and therefore, attenuating oxidative
stress. However, the exact opposite appears to be true,
evidenced by increases in mitochondrial content and
oxygen consumption in response to CR [128]. The fact
that CR does not increase life span when the gene encoding
cytochrome c is deleted [129] or in the presence of electron
transport inhibitors [130, 131] suggests that mitochondria
are critical factors in the phenomenon of life span extension
by CR. There are several mechanisms by which mitochon-
dria may be responsible for the life span-enhancing effects
of CR [1]. In contrast to what would be predicted by the
rate of living hypothesis, increased mitochondrial respira-
tion with CR is accompanied by decreased ROS production
[126]. Expansion of the mitochondrial reticulum with CR
could minimize ROS production by allowing electron flow
from reducing equivalents (NADH, FADH2) to be dis-
tributed over more cytochromes, thus providing less op-
portunity for reverse electron flow [1]. Another possible

mechanism for blunted ROS production involves a shift in
substrate oxidation [126]. In an attempt to spare carbohy-
drate, CR may promote lipid oxidation, which shuttles
electrons into the cytochrome chain through electron
transferring flavoprotein, which bypasses complex I (one
of the two sites for mitochondrial superoxide generation)
and reduces the likelihood of ROS formation [1]. Mito-
chondrial coupling is a component of mitochondrial physi-
ology that may be altered by CR. Mitochondrial coupling,
through its influence on the mitochondrial membrane
potential, could affect the production of ROS. The impact
of CR on mitochondrial coupling is unclear. One report
shows that CR decreases proton leak and ROS production
[132], whereas others suggest that decreased ROS produc-
tion occurs as a result of greater proton leak [133]. Another
possible mechanism involves the possibility of increased
mitochondrial autophagy with CR. Lysosomal degradation
of damaged/dysfunctional organelles and replacement with
newly formed organelles would be beneficial from a
standpoint of cellular energetics and production of ROS.
Studies in C. elegans indicate that genes regulating
mitochondrial autophagy (bec-1 and Ce-atg7) are required
for the longevity phenotype in dietary restriction mutant
worms [134]. Others find that autophagic vacuoles were
increased in the hearts of CR rats [135]. The link between
mitochondrial autophagy and CR-induced life span exten-
sion is in its nascent stages.

Calorie restriction appears to exert its effects on
mitochondria in mammals through a regulated process
involving a class of proteins known as sirtuins, specifically
SIRT1. SIRT1 deacetylates histones and proteins and is

Fig. 2 The free radical theory
of aging posits that a senescent
phenotype is induced by accu-
mulation of oxidative damage
resulting from reactive oxygen
species. Exercise and caloric
restriction are two interventions
that induce mitochondrial bio-
genesis through PGC-1α. Al-
though exercise and CR increase
average life expectancy by pro-
tecting against age-related
comorbidities, only CR has been
shown to increase maximal life
span; an effect that seems to
require the activation of sirtuins
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activated under certain physiological conditions where the
NAD/NADH ratio is elevated (e.g., caloric restriction)
[136]. Activation of SIRT1 may extend life span by
removing acetyl groups from histones, thereby affecting
global gene expression and perhaps silencing genes that
otherwise induce a senescent phenotype when expressed
[137]. Proteins are also targets for the deacetylating action
of SIRT1, one of which is PGC-1α [138, 139]. The
deacetylation of PGC-1α increases its activity and initiates
downstream signaling involving transcription factor targets
(NRF-1, TFAM), which, in turn, stimulate mitochondrial
biogenesis. At the same time, SIRT1 also deacetylates
proteins involved in mitochondrial autophagy [140], sug-
gesting that SIRT1 helps maintain highly functional
mitochondria by regulating the degradation of old, poten-
tially dysfunctional mitochondria and synthesis of new
mitochondria. Exogenous SIRT1 activators such as resver-
atrol and other small molecule activators have been shown
to mimic the beneficial effects of CR and extend life span
when given exogenously to several organisms [141–143].
However, a recent report shows that resveratrol decreases
signs of aging but does not increase life span in mice [144].
Recent studies have demonstrated that resveratrol-treated
aging mice on a high-calorie diet had increased insulin
sensitivity and a trend toward increased survival [145].
These compounds have also been shown to reduce diet-
induced obesity and insulin resistance and to increase
mitochondria activity in a rodent model [141, 143, 146].
Data in humans is fairly limited. One study found that CR
for 6 months increased SIRT1 expression, TFAM expres-
sion, and mitochondrial number [147]. These changes did
not translate to increased mitochondrial respiration and
actually decreased whole-body energy expenditure. The
role of CR and CR mimetics continues to be an important
area of research that may someday result in effective
interventions to reduce age-related comorbidities and
perhaps even extend life span in humans.

Concluding remarks

Advances in medicine and public heath have dramatically
increased average life expectancy over the past 200 years.
An enormous effort has recently been expended to
understand how the aging process is regulated at the
molecular and cellular levels with hopes to find a way to
extend maximal life span; something that has remained
fairly constant in humans. There are numerous determinants
of life span, but one common thread that has emerged in a
variety of species from yeast to rodents is regulation of life
span by mitochondria. It is fascinating that an organelle
believed to have once been an invading Eubacterium has
acquired so much control over the fate of the cell. It is clear

that mitochondria play a role in the cell that goes well
beyond their dogmatic function as the “powerhouse of the
cell.” A potential pathway for the role of mitochondria in
extending life span is outlined (Fig. 2). It is likely that
mitochondrial decay that occurs with age cannot be
counteracted in humans who are not on caloric restriction
unless physical activity is voluntarily enhanced. As we
advance the frontiers of our understanding of how
senescence and life span are regulated, it may become
possible to not only decrease the incidence of age-related
comorbidities, but also extend maximal life span. Address-
ing the latter without regard to the former would create an
undesirable situation of a rapidly expanding population of
individuals who would stress an already overburdened
health-care industry with little contribution to society.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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