479 research outputs found

    Computer vision-based mapping of grapevine vigor variability for enhanced fertilization strategies through intelligent pruning estimation

    Get PDF
    The objective of this study is to develop an affordable and non-invasive method using computer vision to estimate pruning weight in commercial vineyards. The study aims to enable controlled fertilization by leveraging pruning data as an indicator of plant vigor [1]. The methodology entails the analysis of RGB and DEPTH images acquired through an embedded platform (Figure 1) in a vineyard cultivating corvina grapes using the guyot method [2]. Initially, pruning weight was evaluated by processing pictures taken manually with a controlled background. Then, we developed an algorithm to estimate pruned wood weight based on these images. Subsequently, a mobile sensor platform was utilized to automatically capture grapevine images without a controlled background. Collected data will then be used to deploy a convolutional neural network (CNN) for intelligent pruning estimation capable of extracting meaningful data from real-world environments. Additionally, we integrated and validated a visual-odometry sensor (Intel Realsense T265) to map the spatial variability of pruning estimation results

    A Shearless microfluidic device detects a role in mechanosensitivity for awcon neuron in Caenorhabditis elegans

    Get PDF
    AWC olfactory neurons are fundamental for chemotaxis toward volatile attractants in Caenorhabditis elegans. Here, it is shown that AWC(ON) responds not only to chemicals but also to mechanical stimuli caused by fluid flow changes in a microfluidic device. The dynamics of calcium events are correlated with the stimulus amplitude. It is further shown that the mechanosensitivity of AWC(ON) neurons has an intrinsic nature rather than a synaptic origin, and the calcium transient response is mediated by TAX-4 cGMP-gated cation channel, suggesting the involvement of one or more "odorant" receptors in AWC(ON) mechano-transduction. In many cases, the responses show plateau properties resembling bistable calcium dynamics where neurons can switch from one stable state to the other. To investigate the unprecedentedly observed mechanosensitivity of AWC(ON) neurons, a novel microfluidic device is designed to minimize the fluid shear flow in the arena hosting the nematodes. Animals in this device show reduced neuronal activation of AWC(ON) neurons. The results observed indicate that the tangential component of the mechanical stress is the main contributor to the mechanosensitivity of AWC(ON). Furthermore, the microfluidic platform, integrating shearless perfusion and calcium imaging, provides a novel and more controlled solution for in vivo analysis both in micro-organisms and cultured cells

    Forecasting COVID-19-Associated Hospitalizations under Different Levels of Social Distancing in Lombardy and Emilia-Romagna, Northern Italy: Results from an Extended SEIR Compartmental Model

    Get PDF
    The outbreak of coronavirus disease 2019 (COVID-19) was identified in Wuhan, China, in December 2019. As of 17 April 2020, more than 2 million cases of COVID-19 have been reported worldwide. Northern Italy is one of the world's centers of active coronavirus cases. In this study, we predicted the spread of COVID-19 and its burden on hospital care under different conditions of social distancing in Lombardy and Emilia-Romagna, the two regions of Italy most affected by the epidemic. To do this, we used a Susceptible-Exposed-Infectious-Recovered (SEIR) deterministic model, which encompasses compartments relevant to public health interventions such as quarantine. A new compartment L was added to the model for isolated infected population, i.e., individuals tested positives that do not need hospital care. We found that in Lombardy restrictive containment measures should be prolonged at least until early July to avoid a resurgence of hospitalizations; on the other hand, in Emilia-Romagna the number of hospitalized cases could be kept under a reasonable amount with a higher contact rate. Our results suggest that territory-specific forecasts under different scenarios are crucial to enhance or take new containment measures during the epidemic

    Effects of deep heating modalities on the morphological and elastic properties of the non-insertional region of achilles tendon: a pilot study

    Get PDF
    Background: Over the last 20 years, both diathermy and ultrasound have been popular choices for many clinicians in treating musculoskeletal disorders. However, there is a lack of clinical evidence of deep heating modalities to treat tendon pathology, There is no study to investigate the effects of such as physical modalities on morphological and elastic properties on the human tendons. Objective: the objective of the present study was to compare the effects of diathermy and ultrasound therapies on cross sectional area, transversal height and hardness percentage of the non-insertional region of the Achilles tendon in able-bodied subjects. Methods: healthy volunteers were divided in diathermy and ultrasound group received six 15-min treatment sessions. Before and after treatment a sonographic assessment was conducted by mean of ultrasonography and the following parameters were recorded: cross sectional area, transversal height and hardness percentage. Results: thirty-two subjects were enrolled. Between-group comparisons showed a significant change on hardness percentage (p = 0.004) after treatment in diathermy therapy group. Within-group comparison showed a significant improvement in the hardness percentage for the diathermy (p = 0.001) and ultrasound (p = 0.046) after two weeks of treatment. Conclusion: this pilot study demonstrated larger effects on morphological and elastic properties of the non-insertional region of the Achilles tendon after diathermy than ultrasound therapy in normal tendons. Diathermy may be a useful deep heat modality for treating non-insertional Achilles tendinopathy

    C. elegans-based chemosensation strategy for the early detection of cancer metabolites in urine samples

    Get PDF
    Chemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is the main sensory modality in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer

    EPIC 219388192b - An Inhabitant of the Brown Dwarf Desert in the Ruprecht 147 Open Cluster

    Get PDF
    We report the discovery of EPIC 219388192b, a transiting brown dwarf in a 5.3 day orbit around a member star of Ruprecht 147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7

    Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin

    Get PDF
    Simple Summary Gemtuzumab Ozogamicin (GO) is a drug approved for the treatment of acute myeloid leukemia (AML). It targets leukemic cells that express the CD33 molecule on their surface and brings the toxic agent calicheamicin inside the cell to kill it. Several studies have shown that AML patients can benefit of the addition of GO to chemotherapy during induction regimens, pre- and post-transplantation. Moreover, some disease features have been addressed or are under investigation for their capacity to predict response to GO, with the future aim of selecting AML patients that can mostly benefit of GO treatment. Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by genetic and clinical heterogeneity and high mortality. Despite the recent introduction of novel pharmaceutical agents in hemato-oncology, few advancements have been made in AML for decades. In the last years, the therapeutic options have rapidly changed, with the approval of innovative compounds that provide new opportunities, together with new challenges for clinicians: among them, on 1 September, 2017 the Food and Drug Administration granted approval for Gemtuzumab Ozogamicin (GO) in combination with daunorubicin and cytarabine for the treatment of adult patients affected by newly diagnosed CD33(+) AML. Benefits of GO-based regimens were also reported in the pre- and post-transplantation settings. Moreover, several biomarkers of GO response have been suggested, including expression of CD33 and multidrug resistance genes, cytogenetic and molecular profiles, minimal residual disease and stemness signatures. Among them, elevated CD33 expression on blast cells and non-adverse cytogenetic or molecular risk represent largely validated predictors of good response

    Three-dimensional facial morphometry in patients rehabilitated with implant-supported prostheses

    Get PDF
    The aim of the present study was to assess a low-cost, non-invasive facial morphometric digitizer to assist the practitioner in three-dimensional soft-tissue changes before and after oral rehabilitation. The method should provide quantitative data to support an objective assessment of the facial esthetic outcome [1]. Twenty-two patients aged 45-82 years, all with edentulous maxilla and mandible, were assessed both before and after receiving their definitive complete implant-supported prostheses (each received 4-11 implants in each dental arch; full-arch fixed prostheses were made). The three-dimensional coordinates of 50 soft-tissue facial landmarks were collected with a non-invasive digitizer; labial and facial areas, volumes, angles and distances were compared without/ with the prostheses [2]. Dental prostheses induced significant reductions in the nasolabial, mentolabial and interlabial angles, with increased labial prominence (p<0.05, Wilcoxon test). Lip vermilion area and volume significantly increased; significant increments were found in the vertical and anteroposterior labial dimensions. The presence of the dental prostheses significantly (p<0.001) modified the three-dimensional positions of several soft-tissue facial landmarks. The current approach enabled quantitative evaluation of the final soft-tissue results of oral rehabilitation with implant-supported prostheses, without submitting the patients to invasive procedures. The method could assess the three-dimensional appearance of the facial soft tissues of the patient while planning the provisional prosthetic restoration, providing quantitative information to prepare the best definitive prosthesis. Dote ricerca: FSE, Regione Lombardi
    • …
    corecore