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1. INTRODUCTION 

The objective of this study is to develop an affordable and non-invasive method using computer 
vision to estimate pruning weight in commercial vineyards. The study aims to enable controlled 
fertilization by leveraging pruning data as an indicator of plant vigor [1]. The methodology entails the 
analysis of RGB and DEPTH images acquired through an embedded platform (Figure 1) in a vineyard 

cultivating corvina grapes using the guyot method [2].  
Initially, pruning weight was evaluated by processing pictures taken 
manually with a controlled background. Then, we developed an algorithm to 
estimate pruned wood weight based on these images. Subsequently, a 
mobile sensor platform was utilized to automatically capture grapevine 
images without a controlled background. Collected data will then be used to 
deploy a convolutional neural network (CNN) for intelligent pruning 
estimation capable of extracting meaningful data from real-world 

environments. Additionally, we integrated and validated a visual-odometry 
sensor (Intel Realsense T265) to map the spatial variability of pruning 
estimation results. 
 

2. EXPERIMENTAL SETUP 
A series of experimental sessions were conducted. Data collection took place in winter, before 
pruning, allowing for the presence of numerous vine shoots resulting from the previous spring and 
summer's vegetative phase. 

The Masi Agricola winery generously provided us access to a vineyard dedicated to corvina grapes 
cultivated using the guyot method [2] for Amarone production. Data acquisition was conducted 
during daylight hours, encompassing various ambient lighting conditions. The objective of this initial 
experimental campaign was to characterize the performance of RGB and depth cameras. Without 
using AI segmentation algorithms, our initial goal was to extrapolate meaningful pixels from the 
vineyard surroundings. To achieve this, a background-free setup (white sheets were positioned behind 
the vine) was designed to acquire images of the plants that were close to the camera (figure 2). 
 This experimental setup enables easy segmentation of vine images using computer vision algorithms, 

resulting in the extraction of relevant pixels. During the 
experimental sessions, data were collected simultaneously 
from multiple sensors. The sensors setup included three 
cameras: (i) a RGB camera D435i, (ii) an IR depth camera 
D435i, and (iii) an odometry camera T265. To ensure a high 
frame rate and minimize motion blur, an NVIDIA Jetson Nano 
was used as the acquisition device. The Jetson Nano, with its 
multi-processing libraries and dedicated video card, enabled 
the simultaneous processing of multiple camera streams. 

Additionally, this GPU-based device offers the advantage of 
low power consumption and can be powered by a battery. This configuration was intentionally chosen 
to allow the integration with a commercial tractor, enabling an exhaustive evaluation of the whole 
vineyard without additional human involvement. 
 
3. METHODS 
To manage the inherent variability of the plant's woody ramifications, our system models the vine 
shoots as a series of cylinders with different diameters. Each volume will be measured from its length 

and diameter. To achieve good measurement accuracy, however, we cannot use 3D point clouds to 

Figure 1 Embedded 

vision system 

Figure 2 Experimental setup 



estimate shoots diameter directly because the resolution of the sensor does not provide good 
confidence in measurements below 15 mm at 1 m distance [3]. However, we chose this sensor for its 
ability to be integrated into a low-power embedded device and for its robustness to infrared radiation 
in the outdoors [4]. 

To overcome the noise and low resolution of point clouds, 
we rely on RGB information to accurately measure the 
dimensions of the vine shoots. To convert the 
measurements of each cylinder from pixels to the metric 
system, we need to determine the pixel dimension (i.e. the 
ratio between millimeters and pixels). This variable is 
directly influenced by the distance between the object and 
the camera. When a point cloud is unreliable and contains 

propagated errors from noise and low resolution, the depth 
information, taken separately and in clusters, proves to be 
reliable and consistent. Moreover, data were firstly 
preprocessed to remove outlier points. By conducting an 
experimental campaign that involves capturing videos of 
known volumes at various distances, we can establish a 
relationship between pixel length and depth. This enables 
us to estimate a function that converts pixel measurements 

to millimeters (Figure 3; RMSE = 0.0045 mm/px, R: pixel 
length, m: regression slope, b: intercept). 
Once the camera model was established, we proceeded to measure real vine shoots. To account the 
intrinsic variability of branch sections, we explored different approaches. The results from multiple 
acquisitions of a vine sample are shown in figure 4. For shoot length estimation, we obtained a RMSE 
of 9.2 mm (2.7%) and a 
mean deviation of 6.3 mm 
(1.3%). These 
measurements were taken 

at distances ranging from 
500 mm to 1500 mm. The 
accompanying histogram 
(figure 4A) shows the 
normal distribution of the 
errors with respect to the 
actual dimensions. As 
expected, the deviation 

increases as the distance 
from the camera increases 
(Figure 4B).  Our study involves testing various approaches to identify and classify the diameter 
variability within the same branch. We will apply this same model to perform these measurements. 
The developed methodology can effectively estimate vine pruning weight and vine shoot dimensions, 
providing insights into plant vigor [5]. This information can be utilized for precise and targeted 
fertilization, allowing tailored nutrient application in different vineyard areas. 
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Figure 3 Regression function from camera 

calibration. Ratio’s model w.r.t. Depth data. 

Figure 2 Results and RMSE from vine shoots measurements, Histogram (A) and 

error w.r.t. depth (B) 



 


