8 research outputs found

    Role of primary motor cortex in the control of manual dexterity assessed via sequential bilateral lesion in the adult macaque monkey: A case study

    Get PDF
    From a case study, we describe the impact of unilateral lesion of the hand area in the primary motor cortex (M1) on manual dexterity and the role of the intact contralesional M1 in long-term functional recovery. An adult macaque monkey performed two manual dexterity tasks: (i) “modified Brinkman board” task, assessed simple precision grip versus complex precision grip, the latter involved a hand postural adjustment; (ii) “modified Klüver board” task, assessed movements ranging from power grip to precision grip, pre-shaping and grasping. Two consecutive unilateral M1 lesions targeted the hand area of each hemisphere, the second lesion was performed after stable, though incomplete, functional recovery from the primary lesion. Following each lesion, the manual dexterity of the contralesional hand was affected in a comparable manner, effects being progressively more deleterious from power grip to simple and then complex precision grips. Both tasks yielded consistent data, namely that the secondary M1 lesion did not have a significant impact on the recovered performance from the primary M1 lesion, which took place 5 months earlier. In conclusion, the intact contralesional M1 did not play a major role in the long-term functional recovery from a primary M1 lesion targeted to the hand area

    Dairying, diseases and the evolution of lactase persistence in Europe

    No full text
    In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation—proxies for these drivers—provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution

    Dairying, diseases and the evolution of lactase persistence in Europe

    Get PDF
    In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1 . Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal confguration and specifc interactions2,3 . Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved ftness or health indicators. This suggests that other reasons for the benefcial efects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fuctuations, settlement density and wild animal exploitation—proxies for these drivers—provide better explanations of LP selection than the extent of milk exploitation. These fndings ofer new perspectives on prehistoric milk exploitation and LP evolutio
    corecore