141 research outputs found

    Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus

    Get PDF
    To understand how Middle East respiratory syndrome coronavirus (MERS-CoV) transmitted from bats to humans, we compared the virus surface spikes of MERS-CoV and a related bat coronavirus, HKU4. Although HKU4 spike cannot mediate viral entry into human cells, two mutations enabled it to do so by allowing it to be activated by human proteases. These mutations are present in MERS-CoV spike, explaining why MERS-CoV infects human cells. These mutations therefore played critical roles in the bat-to-human transmission of MERS-CoV, either directly or through intermediate hosts

    Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus

    Get PDF
    A constant and long-term threat to human health is cross-species transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) from bats to humans. However, this process is poorly understood. Examining the cross-species transmissibility of bat coronavirus HKU4, which is genetically related to MERS-CoV, can provide critical information about the likely causes of MERS-CoV infections in humans. Here we investigate the receptor usage and cell entry mechanism of HKU4 compared with MERS-CoV. Our results reveal that MERS-CoV has adapted to use human receptor and cellular proteases for efficient human cell entry, whereas HKU4 can potentially follow-up and also infect human cells. These findings are critical for evaluating emerging disease potentials of bat coronaviruses and for preventing and controlling their spread in humans

    An immune-related gene prognostic risk index for pancreatic adenocarcinoma

    Get PDF
    ObjectiveOur goal is to construct an immune-related gene prognostic risk index (IRGPRI) for pancreatic adenocarcinoma (PAAD), and to clarify the immune and molecular features in IRGPRI-defined PAAD subgroups and the benefit of immune checkpoint inhibitors (ICIs) therapy.MethodThrough differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), and univariate Cox regression analysis, 16 immune-related hub genes were identified using the Cancer Genome Atlas (TCGA) PAAD dataset (n = 182) and immune gene set. From these genes, we constructed an IRGPRI with the Cox regression method and the IRGPRI was verified based on the Gene Expression Omnibus (GEO) dataset (n = 45). Then, we analyzed the immune and molecular features and the benefit of ICI therapy in IRGPRI-defined subgroups.ResultsFive genes, including S100A16, CD40, VCAM1, TNFRSF4 and TRAF1 were used to construct IRGPRI. As with the results of the GEO cohort, the overall survival (OS) was more favorable in low IRGPRI patients versus high IRGPRI patients. The composite results pointed out that low IRGPRI was associated with immune response-related pathways, high level of CTLA4, low KRAS and TP53 mutation rate, more infiltration of activated memory CD4+ T cells, CD8+ T cells, and more benefits from ICIs therapy. In comparison, high IRGPRI was associated with cancer-related pathways, low expression of CTLA4, high KRAS and TP53 mutation rate, more infiltration of M2 macrophages, and less benefit from ICIs therapies.ConclusionThis IRGPRI is an encouraging biomarker to define the prognosis, immune and molecular features, and benefits from ICIs treatments in PAAD

    Significant association of RNF213 p.R4810K, a moyamoya susceptibility variant, with coronary artery disease

    Get PDF
    Background The genetic architecture of coronary artery disease has not been fully elucidated, especially in Asian countries. Moyamoya disease is a progressive cerebrovascular disease that is reported to be complicated by coronary artery disease. Because most Japanese patients with moyamoya disease carry the p.R4810K variant of the ring finger 213 gene (RNF213), this may also be a risk factor for coronary artery disease; however, this possibility has never been tested. Methods and results We genotyped the RNF213 p.R4810K variant in 956 coronary artery disease patients and 716 controls and tested the association between p.R4810K and coronary artery disease. We also validated the association in an independent population of 311 coronary artery disease patients and 494 controls. In the replication study, the p.R4810K genotypes were imputed from genome-wide genotyping data based on the 1000 Genomes Project. We used multivariate logistic regression analyses to adjust for well-known risk factors such as dyslipidemia and smoking habits. In the primary study population, the frequency of the minor variant allele was significantly higher in patients with coronary artery disease than in controls (2.04% vs. 0.98%), with an odds ratio of 2.11 (p = 0.017). Under a dominant model, after adjustment for risk factors, the association remained significant, with an odds ratio of 2.90 (95% confidence interval: 1.37-6.61; p = 0.005). In the replication study, the association was significant after adjustment for age and sex (odds ratio = 4.99; 95% confidence interval: 1.16-21.53; p = 0.031), although it did not reach statistical significance when further adjusted for risk factors (odds ratio = 3.82; 95% confidence interval: 0.87-16.77; p = 0.076). Conclusions The RNF213 p.R4810K variant appears to be significantly associated with coronary artery disease in the Japanese population

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Advances in SARS-CoV-2 receptor-binding domain-based COVID-19 vaccines

    No full text
    Introduction The Coronavirus Disease 2019 (COVID-19) pandemic has caused devastating human and economic costs. Vaccination is an important step in controlling the pandemic. Severe acute respiratory coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, infects cells by binding a cellular receptor through the receptor-binding domain (RBD) within the S1 subunit of the spike (S) protein. Viral entry and membrane fusion are mediated by the S2 subunit. Areas covered SARS-CoV-2 S protein, particularly RBD, serves as an important target for vaccines. Here we review the structure and function of SARS-CoV-2 S protein and its RBD, summarize current COVID-19 vaccines targeting the RBD, and outline potential strategies for improving RBD-based vaccines. Overall, this review provides important information that will facilitate rational design and development of safer and more effective COVID-19 vaccines. Expert opinion The S protein of SARS-CoV-2 harbors numerous mutations, mostly in the RBD, resulting in multiple variant strains. Although many COVID-19 vaccines targeting the RBD of original virus strain (and previous variants) can prevent infection of these strains, their ability against recent dominant variants, particularly Omicron and its offspring, is significantly reduced. Collective efforts are needed to develop effective broad-spectrum vaccines to control current and future variants that have pandemic potential

    Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain

    No full text
    Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy

    Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation

    Get PDF
    The effects of temperature, pressure, initial promoter concentration and coal seam gas/liquid ratio on the separation of methane from coal seam gas were experimentally investigated. Low temperature, high pressure and high promoter concentration lead to high separation efficiency and high recovery rate of CH 4 , but reduce the CH 4 capture selectivity in hydrate. Experimental simulation of a three-stage separation shows that CH 4 can be concentrated from 34.6 to 81.3 mol% in the dissociated gas, while its content is only 7.2 mol% in the residual gas. An innovative model was established to predict the separation performance. The modeling results reasonably match the experimental data in predicting the effects of different influential factors, with an average relative deviation of 2.83%, the maximum relative deviation 11.2%, and the average relative variance 0.1044. The modeling results of a three-stage separation process include 81.0 mol% of CH 4 in the final dissociated gas and 5.5 mol% of CH 4 in the final residual gas. The recovery rate of CH 4 was 90.1 mol% and the separation factor was 73.0
    corecore