409 research outputs found

    AMPHIBIAN AND REPTILE COLONIZATION OF RECLAIMED COAL SPOIL GRASSLANDS

    Get PDF
    While habitat loss is a major driver of amphibian and reptile declines globally, a subset of post-industrial landscapes, reclaimed and restored, are creating habitat for these animals. In a previous work, we showed that amphibians and reptiles use reclaimed and restored grasslands. In the present work we quantify captures at drift-fence/pitfall trap arrays over two consecutive years and show that several species of amphibians are not only successfully reproducing but that juveniles are being recruited into the population. In particular, 15,844 amphibians and 334 reptiles representing 25 species (14 amphibians, 11 reptiles) were captured at drift fences in 2009 and 2010. Nine additional reptile species were found opportunistically while conducting other research activities at the study site. Out of a total of 8,064 metamorphosing juveniles we detected 126 malformations, a 1.6% rate. The major malformation types were limbs missing (amelia) or foreshortened (ectromely), eye discolorations, and digits foreshortened (ectrodactyly) or small (brachydactyly). Our data show that reclaimed, restored, and properly managed landscapes can support reproducing populations of amphibians and reptiles with low malformation rates, including species in decline across other portions of their range

    Protection strategies for next generation passive optical networks -2

    Get PDF
    Next Generation Passive Optical Networks-2 (NGPON2) are being considered to upgrade the current PON technology to meet the ever increasing bandwidth requirements of the end users while optimizing the network operators' investment. Reliability performance of NG-PON2 is very important due to the extended reach and, consequently, large number of served customers per PON segment. On the other hand, the use of more complex and hence more failure prone components than in the current PON systems may degrade reliability performance of the network. Thus designing reliable NG-PON2 architectures is of a paramount importance. Moreover, for appropriately evaluating network reliability performance, new models are required. For example, the commonly used reliability parameter, i.e., connection availability, defined as the percentage of time for which a connection remains operable, doesn't reflect the network wide reliability performance. The network operators are often more concerned about a single failure affecting a large number of customers than many uncorrelated failures disconnecting fewer customers while leading to the same average failure time. With this view, we introduce a new parameter for reliability performance evaluation, referred to as the failure impact. In this paper, we propose several reliable architectures for two important NGPON2 candidates: wavelength division multiplexed (WDM) PON and time and wavelength division multiplexed (TWDM) PON. Furthermore, we evaluate protection coverage, availability, failure impact and cost of the proposed schemes in order to identify the most efficient protection architecture

    AMPHIBIAN RESPONSE TO A LARGE-SCALE HABITAT RESTORATION IN THE PRAIRIE POTHOLE REGION

    Get PDF
    Over the next half-century, scientists anticipate that nearly one third of the currently recognized 7,450 amphibian species will become extinct. Many organizations have responded to the challenge of conserving amphibian biodiversity, some indirectly. Under the auspices of the Iowa Great Lakes Management Plan, the United States Fish and Wildlife Service, Department of Natural Resources, and their partners have been implementing habitat restoration efforts designed to protect water quality, provide recreational opportunities, and benefit wildlife at the regional level. With this program, over 130 wetlands have been created in the past 30 years on recently purchased public lands—one of the largest wetland restoration projects conducted in the Prairie Pothole Region of the Great Plains. While amphibians were not the main target of these restorations, we show that in response, 121 new breeding populations of native Northern Leopard Frogs (Lithobates pipiens; n = 80) and Eastern Tiger Salamanders (Ambystoma tigrinum; n = 41) have been established; in addition, we found 19 populations of non-native American Bullfrogs (L. catesbeianus). Using the program PRESENCE, we show that leopard frog occupancy was greatest in newer (<18 years old), intermediate-sized wetlands, and that tiger salamander occupancy was greatest in small wetlands without fish and larval bullfrogs. These data imply that because native amphibians responded positively to these newly established wetlands, habitat availability has likely been a factor in limiting population numbers. Further, these data suggest the presence of fishes and introduced bullfrogs interferes with the ability of tiger salamanders to colonize restored wetlands

    Functional methods in the theory of magnetoimpurity states of electrons in quantum wires

    Full text link
    Functional methods are used to study magnetoimpurity states of electrons in nanostructures. The Keldysh formalism is applied to these states. The theory is illustrated using a quantum wire sample with impurity atoms capable of localizing electrons in a magnetic field. The characteristics of magnetoimpurity states of electrons in the wire are calculated using the model of a Gaussian separable potential.Comment: 15 pages, 1 figur

    The Structure of the [Zn_In - V_P] Defect Complex in Zn Doped InP

    Get PDF
    We study the structure, the formation and binding energies and the transfer levels of the zinc-phosphorus vacancy complex [Zn_In - V_P] in Zn doped p-type InP, as a function of the charge, using plane wave ab initio DFT-LDA calculations in a 64 atom supercell. We find a binding energy of 0.39 eV for the complex, which is neutral in p-type material, the 0/-1 transfer level lying 0.50 eV above the valence band edge, all in agreement with recent positron annihilation experiments. This indicates that, whilst the formation of phosphorus vacancies (V_P) may be involved in carrier compensation in heavily Zn doped material, the formation of Zn-vacancy complexes is not. Regarding the structure: for charge states Q=+6 to -4 the Zn atom is in an sp^2 bonded DX position and electrons added/removed go to/come from the remaining dangling bonds on the triangle of In atoms. This reduces the effective vacancy volume monatonically as electrons are added to the complex, also in agreement with experiment. The reduction occurs through a combination of increased In-In bonding and increased Zn-In electrostatic attraction. In addition, for certain charge states we find complex Jahn-Teller behaviour in which up to three different structures, (with the In triangle dimerised, antidimerised or symmetric) are stable and are close to degenerate. We are able to predict and successfully explain the structural behaviour of this complex using a simple tight binding model.Comment: 10 pages text (postscript) plus 8 figures (jpeg). Submitted to Phys. Rev.

    Geographic model for cost estimation of FTTH deployment: overcoming inaccuracy in uneven-populated areas

    Get PDF
    A geographic approach is proposed to accurately estimate the cost of FTTH networks. In contrast to the existing geometric models, our model can efficiently avoid inaccurate estimation of the fibre infrastructure cost in the uneven-populated areas

    Coexistence of Band Jahn Teller Distortion and superconductivity in correlated systems

    Full text link
    The co-existence of band Jahn-Teller (BJT) effect with superconductivity (SC) is studied for correlated systems, with orbitally degenerate bands using a simple model. The Hubbard model for a doubly degenerate orbital with the on-site intraorbital Coulomb repulsion treated in the slave boson formalism and the interorbital Coulomb repulsion treated in the Hartree-Fock mean field approximation, describes the correlated system. The model further incorporates the BJT interaction and a pairing term to account for the lattice distortion and superconductivity respectively. It is found that structural distortion tends to suppress superconductivity and when SC sets in at low temperatures, the growth of the lattice distortion is arrested. The phase diagram comprising of the SC and structural transition temperatures TcT_c and TsT_s versus the dopant concentration δ\delta reveals that the highest obtainable TcT_c for an optimum doping is limited by structural transition. The dependence of the occupation probabilities of the different bands as well as the density of states (DOS) in the distorted-superconducting phase, on electron correlation has been discussed.Comment: RevTex, 4 pages, 4 figuers (postscript files attached) Journal Reference : Phys. Rev. B (accepted for publication

    SARS-CoV2 (COVID-19) infection: is fetal surgery in times of national disasters reasonable?

    Get PDF
    Even though the global COVID‐19 pandemic may affect how medical care is delivered in general, most countries try to maintain steady access for women to routine pregnancy care, including fetal anomaly screening. This means that, also during this pandemic, fetal anomalies will be detected, and that discussions regarding invasive genetic testing and possibly fetal therapy will need to take place. For patients, concerns about Severe Acute Respiratory Syndrome‐Corona Virus 2 will add to the anxiety caused by the diagnosis of a serious fetal anomaly. Yet, also for fetal medicine teams the situation gets more complex as they must weigh up the risks and benefits to the fetus as well as the mother, while managing a changing evidence base and logistic challenges in their healthcare system

    Scenarios about the long-time damage of silicon as material and detectors operating beyond LHC collider conditions

    Full text link
    For the new hadron collider LHC and some of its updates in luminosity and energy, as SLHC and VLHC, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation in the bulk of the silicon as material and for silicon detectors, in continuous radiation field, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame a phenomenological model developed previously by the authors. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation.Comment: submitted to Physica Scripta Work in the frame of CERN RD-50 Collaboratio
    corecore