241 research outputs found

    Modeling the mobility of living organisms in heterogeneous landscapes: Does memory improve foraging success?

    Full text link
    Thanks to recent technological advances, it is now possible to track with an unprecedented precision and for long periods of time the movement patterns of many living organisms in their habitat. The increasing amount of data available on single trajectories offers the possibility of understanding how animals move and of testing basic movement models. Random walks have long represented the main description for micro-organisms and have also been useful to understand the foraging behaviour of large animals. Nevertheless, most vertebrates, in particular humans and other primates, rely on sophisticated cognitive tools such as spatial maps, episodic memory and travel cost discounting. These properties call for other modeling approaches of mobility patterns. We propose a foraging framework where a learning mobile agent uses a combination of memory-based and random steps. We investigate how advantageous it is to use memory for exploiting resources in heterogeneous and changing environments. An adequate balance of determinism and random exploration is found to maximize the foraging efficiency and to generate trajectories with an intricate spatio-temporal order. Based on this approach, we propose some tools for analysing the non-random nature of mobility patterns in general.Comment: 14 pages, 4 figures, improved discussio

    L\'evy-like behavior in deterministic models of intelligent agents exploring heterogeneous environments

    Full text link
    Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on mental maps to explore strongly heterogeneous environments. In this work we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power-law, p(k)∼k−βp(k)\sim k^{-\beta}, in some range of the exponent β\beta, the foraging medium induces movements that are similar to L\'evy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.Comment: 15 pages, 7 figures. One section adde

    Reconciling Niches and Neutrality in a Subalpine Temperate Forest

    Get PDF
    The Unified Neutral Theory of Biodiversity has been put forth to explain species coexistence in forests worldwide, but its assumption of species equivalence has been met with much debate. Theoretical advancements have reconciled the opposing concepts of neutral and niche theories as two ends of a continuum, improving our understanding of global patterns in diversity and community assembly. However, the relative importance of niche and neutral processes remains understudied in temperate forests. To determine the balance of niche and neutral processes in climatically limited subalpine temperate forests, we established the Utah Forest Dynamics Plot, a 13.64-ha plot comprising 27,845 stems ≥1 cm diameter at breast height (1.37 m) representing 17 species at 3100 m elevation on the Colorado Plateau. We examined the fit of niche- and neutral-based models to the species abundance distribution (SAD), and tested three underlying assumptions of neutral theory. The neutral model was a poor fit to the SAD, but we did not find the alternative model to provide a better fit. Using spatial analyses, we tested the neutral assumptions of functional equivalence, ecological equivalence, and habitat generality. Half of species analyzed were characterized by non-neutral recruitment processes, and the two most abundant species exhibited asymmetric competitive and facilitative interactions with each other. The assumption of habitat generality was strongly contradicted, with all common species having habitat preferences. We conclude niche-based processes play the dominant role in structuring subalpine forest communities, and we suggest possible explanations for variation in the relative importance of niche vs. neutral processes along ecological gradients

    Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells

    Get PDF
    INTRODUCTION: The taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance. METHODS: MCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR). RESULTS: MCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes in the expression of TNF-α-related genes consistent with reduced TNF-induced cytotoxicity and activation of NF-κB survival pathways. CONCLUSIONS: We report for the first time that taxanes can promote dose-dependent sTNF-α production in tumor cells at clinically relevant concentrations, which can contribute to their cytotoxicity. Defects in the TNF cytotoxicity pathway or activation of TNF-dependent NF-κB survival genes may, in contrast, contribute to taxane resistance in tumor cells. These findings may be of strong clinical significance

    Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells

    Get PDF
    AbstractThe Notch signaling pathway controls cell fate choices at multiple steps during cell lineage progression. To produce the cell fate choice appropriate for a particular stage in the cell lineage, Notch signaling needs to interpret the cell context information for each stage and convert it into the appropriate cell fate instruction. The molecular basis for this temporal context-dependent Notch signaling output is poorly understood, and to study this, we have engineered a mouse embryonic stem (ES) cell line, in which short pulses of activated Notch can be produced at different stages of in vitro neural differentiation. Activation of Notch signaling for 6h specifically at day 3 during neural induction in the ES cells led to significantly enhanced cell proliferation, accompanied by Notch-mediated activation of cyclin D1 expression. A reduction of cyclin-D1-expressing cells in the developing CNS of Notch signaling-deficient mouse embryos was also observed. Expression of a dominant negative form of cyclin D1 in the ES cells abrogated the Notch-induced proliferative response, and, conversely, a constitutively active form of cyclin D1 mimicked the effect of Notch on cell proliferation. In conclusion, the data define a novel temporal context-dependent function of Notch and a critical role for cyclin D1 in the Notch-induced proliferation in ES cells

    Impact of SARS-CoV-2 on training and mental well-being of surgical gynecological oncology trainees

    Get PDF
    Introduction: The SARS-CoV-2 global pandemic has caused a crisis disrupting health systems worldwide. While efforts are being made to determine the extent of the disruption, the impact on gynecological oncology trainees/training has not been explored. We conducted an international survey of the impact of SARS-CoV-2 on clinical practice, medical education, and mental well-being of surgical gynecological oncology trainees. Methods: In our cross-sectional study, a customized web-based survey was circulated to surgical gynecological oncology trainees from national/international organizations from May to November 2020. Validated questionnaires assessed mental well-being. The Wilcoxon rank-sum test and Fisher's exact test were used to analyse differences in means and proportions. Multiple linear regression was used to evaluate the effect of variables on psychological/mental well-being outcomes. Outcomes included clinical practice, medical education, anxiety and depression, distress, and mental well-being. Results: A total of 127 trainees from 34 countries responded. Of these, 52% (66/127) were from countries with national training programs (UK/USA/Netherlands/Canada/Australia) and 48% (61/127) from countries with no national training programs. Altogether, 28% (35/125) had suspected/confirmed COVID-19, 28% (35/125) experienced a fall in household income, 20% (18/90) were self-isolated from households, 45% (57/126) had to re-use personal protective equipment, and 22% (28/126) purchased their own. In total, 32.3% (41/127) of trainees (16.6% (11/66) from countries with a national training program vs 49.1% (30/61) from countries with no national training program, p=0.02) perceived they would require additional time to complete their training fellowship. The additional training time anticipated did not differ between trainees from countries with or without national training programs (p=0.11) or trainees at the beginning or end of their fellowship (p=0.12). Surgical exposure was reduced for 50% of trainees. Departmental teaching continued throughout the pandemic for 69% (87/126) of trainees, although at reduced frequency for 16.1% (14/87), and virtually for 88.5% (77/87). Trainees reporting adequate pastoral support (defined as allocation of a dedicated mentor/access to occupational health support services) had better mental well-being with lower levels of anxiety/depression (p=0.02) and distress (p<0.001). Trainees from countries with a national training program experienced higher levels of distress (p=0.01). Mean (SD) pre-pandemic mental well-being scores were significantly higher than post-pandemic scores (8.3 (1.6) vs 7 (1.8); p<0.01). Conclusion: SARS-CoV-2 has negatively impacted the surgical training, household income, and psychological/mental well-being of surgical gynecological oncology trainees. The overall clinical impact was worse for trainees in countries with no national training program than for those in countries with a national training program, although national training program trainees reported greater distress. COVID-19 sickness increased anxiety/depression. The recovery phase must focus on improving mental well-being and addressing lost training opportunities

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Cell-binding IgM in CSF is distinctive of multiple sclerosis and targets the iron transporter SCARA5

    Get PDF
    Intrathecal IgM production in multiple sclerosis (MS) is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in MS, CSF from two independent cohorts, including MS patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS- related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of MS donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterisation and antigen identification. We produced 5 cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an EAE model. CSF IgM might contribute to CNS inflammation in MS by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain

    Lipopolysaccharide does not alter small airway reactivity in mouse lung slices

    Get PDF
    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 µg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases

    Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth

    Get PDF
    Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation. Unlike human teeth, mouse incisors grow throughout life, based on stem and progenitor cell activity. Here the authors generate single cell RNA-seq comparative maps of continuously-growing mouse incisor, non-growing mouse molar and human teeth, combined with lineage tracing to reveal dental cell complexity.Peer reviewe
    • …
    corecore