23 research outputs found

    MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels

    No full text
    The mechanisms behind carbon dioxide (CO2) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta-mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter. © 2019, The Author(s)

    Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague

    Get PDF
    该论文通过对青铜器时代的两个鼠疫杆菌分离株进行测序,深入剖析了鼠疫杆菌的历史。德国、俄罗斯、中国和瑞士等多国研究员共同参与了研究。这篇论文的第一作者是德国马克斯-普朗克研究所的考古遗传学专家Maria Spyrou。她和同事从俄罗斯墓穴中埋葬的九名古代人的牙齿样本入手,发现有两人感染鼠疫杆菌。之后,他们从这些个体中分离出距今约3800年的病原菌。在这项新研究中,研究人员利用液相捕获和Illumina鸟枪法测序技术,对青铜器时代的一名男子(RT5)的鼠疫杆菌和人类宿主序列进行测序,其中鼠疫杆菌基因组的平均覆盖度达到32倍。同时,他们还对另一名感染个体(RT6)的分离株进行测序,平均覆盖度为1.9倍。系统发育分析表明,RT5和RT6分离株是共同谱系的一部分,这个谱系的祖先是史上三次瘟疫大流行的罪魁祸首。除了众所周知的中世纪欧洲瘟疫大流行,鼠疫杆菌还曾造成公元6世纪的查士丁尼瘟疫和19世纪的中国大规模鼠疫。 马克斯-普朗克人类历史科学研究所的古病理学专家Kirsten Bos表示,这些结果表明“具有传播潜力的瘟疫存在的时间比我们想象得更久。”Bos是这篇论文的通讯作者之一。【Abstract】The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000–3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day.We thank Cosimo Posth, Marcel Keller, Michal Feldman and Wolfgang Haak for useful insights to the manuscript, as well as Alexander Immel and Stephen Clayton for computational support. In addition, we are thankful to Guido Brandt, Antje Wissgott and Cäcilia Freund for laboratory support. M.A.S., A.H., K.I.B. and J.K. were supported by the ERC starting grant APGREID, and by the Max Planck Society. C.C.W. was supported by the Max Planck Society and the Nanqiang Outstanding Young Talents Program of Xiamen University. D.K. was supported by a Marie Heim-Vögtlin grant from the Swiss National Science Foundation

    Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague

    Get PDF
    © 2018 The Author(s). The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000-3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day

    Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains.

    Get PDF
    Treponema pallidum infections occur worldwide causing, among other diseases, syphilis and yaws. In particular sexually transmitted syphilis is regarded as a re-emerging infectious disease with millions of new infections annually. Here we present three historic T. pallidum genomes (two from T. pallidum ssp. pallidum and one from T. pallidum ssp. pertenue) that have been reconstructed from skeletons recovered from the Convent of Santa Isabel in Mexico City, operational between the 17th and 19th century. Our analyses indicate that different T. pallidum subspecies caused similar diagnostic presentations that are normally associated with syphilis in infants, and potential evidence of a congenital infection of T. pallidum ssp. pertenue, the causative agent of yaws. This first reconstruction of T. pallidum genomes from archaeological material opens the possibility of studying its evolutionary history at a resolution previously assumed to be out of reach

    Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague

    No full text
    © 2018 The Author(s). The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000-3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day

    A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in 15th century Europe

    No full text
    Developments in techniques for identification of pathogen DNA in archaeological samples can expand our resolution of disease detection. Our application of a non-targeted molecular screening tool for the parallel detection of pathogens in historical plague victims from post-medieval Lithuania revealed the presence of more than one active disease in one individual. In addition to Yersinia pestis, we detected and genomically characterized a septic infection of Treponema pallidum pertenue, a subtype of the treponemal disease family recognised as the cause of the tropical disease yaws. Our finding in northern Europe of a disease that is currently restricted to equatorial regions is interpreted within an historical framework of intercontinental trade and potential disease movements. Through this we offer an alternative hypothesis for the history and evolution of the treponemal diseases, and posit that yaws be considered an important contributor to the sudden epidemic of late 15th century Europe that is widely ascribed to syphilis

    Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague

    No full text
    The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000–3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day

    Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens

    No full text
    The last century has witnessed progress in the study of ancient infectious disease from purely medical descriptions of past ailments to dynamic interpretations of past population health that draw upon multiple perspectives. The recent adoption of high-throughput DNA sequencing has led to an expanded understanding of pathogen presence, evolution, and ecology across the globe. This genomic revolution has led to the identification of disease-causing microbes in both expected and unexpected contexts, while also providing for the genomic characterization of ancient pathogens previously believed to be unattainable by available methods. In this review we explore the development of DNA-based ancient pathogen research, the specialized methods and tools that have emerged to authenticate and explore infectious disease of the past, and the unique challenges that persist in molecular paleopathology. We offer guidelines to mitigate the impact of these challenges, which will allow for more reliable interpretations of data in this rapidly evolving field of investigation. Expected final online publication date for the Annual Review of Microbiology Volume 73 is September 9, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates

    Origin and Health Status of First-Generation Africans from Early Colonial Mexico

    Get PDF
    The forced relocation of several thousand Africans during Mexico’s historic period has so far been documented mostly through archival sources, which provide only sparse detail on their origins and lived experience. Here, we employ a bioarchaeological approach to explore the life history of three 16th century Africans from a mass burial at the San José de los Naturales Royal Hospital in Mexico City. Our approach draws together ancient genomic data, osteological analysis, strontium isotope data from tooth enamel, δ13C and δ15N isotope data from dentine, and ethnohistorical information to reveal unprecedented detail on their origins and health. Analyses of skeletal features, radiogenic isotopes, and genetic data from uniparental, genome-wide, and human leukocyte antigen (HLA) markers are consistent with a Sub-Saharan African origin for all three individuals. Complete genomes of Treponema pallidum sub. pertenue (causative agent of yaws) and hepatitis B virus (HBV) recovered from these individuals provide insight into their health as related to infectious disease. Phylogenetic analysis of both pathogens reveals their close relationship to strains circulating in current West African populations, lending support to their origins in this region. The further relationship between the treponemal genome retrieved and a treponemal genome previously typed in an individual from Colonial Mexico highlights the role of the transatlantic slave trade in the introduction and dissemination of pathogens into the New World. Putting together all lines of evidence, we were able to create a biological portrait of three individuals whose life stories have long been silenced by disreputable historical events
    corecore