479 research outputs found

    A Connectedness Constraint for Learning Sparse Graphs

    Full text link
    Graphs are naturally sparse objects that are used to study many problems involving networks, for example, distributed learning and graph signal processing. In some cases, the graph is not given, but must be learned from the problem and available data. Often it is desirable to learn sparse graphs. However, making a graph highly sparse can split the graph into several disconnected components, leading to several separate networks. The main difficulty is that connectedness is often treated as a combinatorial property, making it hard to enforce in e.g. convex optimization problems. In this article, we show how connectedness of undirected graphs can be formulated as an analytical property and can be enforced as a convex constraint. We especially show how the constraint relates to the distributed consensus problem and graph Laplacian learning. Using simulated and real data, we perform experiments to learn sparse and connected graphs from data.Comment: 5 pages, presented at the European Signal Processing Conference (EUSIPCO) 201

    Delocalization transition for the Google matrix

    Full text link
    We study the localization properties of eigenvectors of the Google matrix, generated both from the World Wide Web and from the Albert-Barabasi model of networks. We establish the emergence of a delocalization phase for the PageRank vector when network parameters are changed. In the phase of localized PageRank, a delocalization takes place in the complex plane of eigenvalues of the matrix, leading to delocalized relaxation modes. We argue that the efficiency of information retrieval by Google-type search is strongly affected in the phase of delocalized PageRank.Comment: 4 pages, 5 figures. Research done at http://www.quantware.ups-tlse.fr

    Trilogy on Computing Maximal Eigenpair

    Full text link
    The eigenpair here means the twins consist of eigenvalue and its eigenvector. This paper introduces the three steps of our study on computing the maximal eigenpair. In the first two steps, we construct efficient initials for a known but dangerous algorithm, first for tridiagonal matrices and then for irreducible matrices, having nonnegative off-diagonal elements. In the third step, we present two global algorithms which are still efficient and work well for a quite large class of matrices, even complex for instance.Comment: Updated versio

    Ranking and clustering of nodes in networks with smart teleportation

    Get PDF
    Random teleportation is a necessary evil for ranking and clustering directed networks based on random walks. Teleportation enables ergodic solutions, but the solutions must necessarily depend on the exact implementation and parametrization of the teleportation. For example, in the commonly used PageRank algorithm, the teleportation rate must trade off a heavily biased solution with a uniform solution. Here we show that teleportation to links rather than nodes enables a much smoother trade-off and effectively more robust results. We also show that, by not recording the teleportation steps of the random walker, we can further reduce the effect of teleportation with dramatic effects on clustering.Comment: 10 pages, 7 figure

    Reducing the Effects of Unequal Number of Games on Rankings

    Full text link
    Ranking is an important mathematical process in a variety of contexts such as information retrieval, sports and business. Sports ranking methods can be applied both in and beyond the context of athletics. In both settings, once the concept of a game has been defined, teams (or individuals) accumulate wins, losses, and ties, which are then factored into the ranking computation. Many settings involve an unequal number of games between competitors. This paper demonstrates how to adapt two sports rankings methods, the Colley and Massey ranking methods, to settings where an unequal number of games are played between the teams. In such settings, the standard derivations of the methods can produce nonsensical rankings. This paper introduces the idea of including a super-user into the rankings and considers the effect of this fictitious player on the ratings. We apply such techniques to rank batters and pitchers in Major League baseball, professional tennis players, and participants in a free online social game. The ideas introduced in this paper can further the scope that such methods are applied and the depth of insight they offer

    A Minimum Violations Ranking Method

    Get PDF
    We present a rating method that, given information on the pairwise comparisons of n items,minimizes the number of inconsistencies in the ranking of those items. Our Minimum ViolationsRanking (MVR) Method uses a binary linear integer program (BILP) to do this. We prove conditionswhen the relaxed LP will give an optimal solution to the original BILP. In addition, the LP solutiongives information about ties and sensitivities in the ranking. Lastly, our MVR method makes useof bounding and constraint relaxation techniques to produce a fast algorithm for the linear orderingproblem, solving an instance with about one thousand items in less than 10 minutes

    A minimum violations ranking method

    Get PDF
    We present a rating method that, given information on the pairwise comparisons of n items, minimizes the number of inconsistencies in the ranking of those items. Our Minimum Violations Ranking (MVR) Method uses a binary linear integer program (BILP) to do this. We prove conditions when the relaxed LP will give an optimal solution to the original BILP. In addition, the LP solution gives information about ties and sensitivities in the ranking. Lastly, our MVR method makes use of bounding and constraint relaxation techniques to produce a fast algorithm for the linear ordering problem, solving an instance with about one thousand items in less than 10 minutes

    Influence, originality and similarity in directed acyclic graphs

    Get PDF
    We introduce a framework for network analysis based on random walks on directed acyclic graphs where the probability of passing through a given node is the key ingredient. We illustrate its use in evaluating the mutual influence of nodes and discovering seminal papers in a citation network. We further introduce a new similarity metric and test it in a simple personalized recommendation process. This metric's performance is comparable to that of classical similarity metrics, thus further supporting the validity of our framework.Comment: 6 pages, 4 figure
    corecore