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Abstract – We introduce a framework for network analysis based on random walks on directed
acyclic graphs where the probability of passing through a given node is the key ingredient. We
illustrate its use in evaluating the mutual influence of nodes and discovering seminal papers in a
citation network. We further introduce a new similarity metric and test it in a simple personalized
recommendation process. This metric’s performance is comparable to that of classical similarity
metrics, thus further supporting the validity of our framework.

The past two decades have witnessed a network revo-
lution [1] fueled by the ever-increasing computer compu-
tational power at our disposal and by the availability of
rich datasets mapping virtually all fields of human activ-
ity [2,3]. Complex networks and algorithms based on these
resources found their application in the most diverse fields,
ranging from nonlinear dynamics and critical phenom-
ena [4,5] to social and economic systems [6]. Random walks
are among the most prominent classes of processes taking
place on networks, being employed in importance rankings
for the World Wide Web [7], recommender systems [8],
disease transmission models [9], nodes similarity [10] and
many other areas [11].
A relatively less-studied class of networks is represented

by directed acyclic graphs (DAGs) which occur in both
natural and artificial systems. Their acyclicity (absence
of directed cycles) stems either from an implicit time
ordering (as in citation networks where only past papers
can be cited) or from natural constraints (as in food webs).
Even when nodes of a DAG do not have time stamps
attached, a causal structure with all edges pointing from
later to earlier nodes can always be recovered. Theoretical
models exist for building random DAGs with fixed degree
sequences or with fixed expected degrees [12,13].
Acyclicity turns out to be highly advantageous to filter

information through a random-walk process. If we consider
a random walk on a generic network, the probability of
passing through a given node —which we refer to as
passage probability— is usually not a meaningful quantity
as it may well be equal to one for all nodes in the network.
The situation is rather the opposite if we instead consider
a DAG, as every random walk along the network’s edges

comes to an end when a root node with zero out-degree is
reached.
In this letter we introduce an analytical framework

for DAGs to quantify the influence of one node over
another based on the passage probability and discuss its
applications. In particular we propose a method to identify
papers fundamental to the growth of a given research
area and define a new similarity metric. Relation to
PageRank which has been used to citation data before [14]
(see [15] for a historical perspective of PageRank and other
fields of its applicability), is also discussed. We test our
framework on citation data provided by the American
Physical Society and we show that: i) the proposed method
is able to uncover seminal papers even if they do not
have particularly high citation counts; ii) the similarity
metric performs well when used as a component of a
simple recommendation algorithm [16]. Note that the
time dimension, neglected by many information filtering
techniques, is implicitly taken into account by acting on
a DAG. While we use academic citation data to test our
model and often refer to papers and citations instead of
nodes and edges, the majority of this work is general
and applicable to other DAGs such as those representing
family trees and reference networks of patents [17] and
legal cases [18].
Consider a directed acyclic graph composed of N nodes

and L directed edges pointing from newer to older nodes.
In- and out-degree of node x are denoted as kinx and k

out
x ,

respectively. We further denote by Ax the set of nodes
that can be reached from node x (x’s ancestors) and by
Px the set of nodes from which x can be reached (x’s
progeny). Since the network is acyclic, ∀x: Ax ∩Px = ∅.
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Fig. 1: Comparison of a random walk starting at X (a)
with passing of “genes” (b). According to the description
in the main text, ci = ei for i= 1, 2, 3, c4 =

1
3
(c1+ c2+

c3)+ e4, c5 = c3+ e5, c6 =
1
3
(c4+ c5+ c3)+ e6 =

1
9
e1+

1
9
e2+

7
9
e3+

1
3
e4+

1
3
e5+ e6. Coefficients in c6 agree with the corre-

sponding passing probabilities in (a). Note that while the
random walk proceeds from top to bottom, the genetic compo-
sition propagates from bottom to top.

A random walk starting in node x can be encoded in an N -
dimensional vector Gx whose i-th component represents
the probability of passing through node i (see fig. 1(a) for
an illustration). Thanks to the network’s acyclicity, Gx
fulfills the equation

Gx =WGx, (1)

where W is the transition matrix with elements Wij =
1/kouti if i cites j and Wij = 0 otherwise. The boundary
condition for eq. (1) is given by (Gx)x = 1 which reflects
that any random walk certainly passes through its starting
point. (One can also obtain Gx by simply following the
random walk starting at node x as it is done in fig. 1(a).)
Elements of Gx are by definition positive for all nodes in
Ax and zero for all other nodes. Nodes without out-going
links are represented by a zero column in W and act as
sinks for the random walk.
To obtain a compact formalism, we construct an N ×N

matrix G where column x is equal to Gx. Elements of
this matrix have simple interpretation: Gyx represents the
probability of passing through node y when starting in
node x. One may check that Gyx =

∑∞
n=0(W

n)yx (since
W is a transition matrix, (Wn)yx is the probability of
moving from x to y over a path of length n). Note that
while eq. (1) recalls an equation for stationary occupation
probabilities, this not the case: unlike the classical random
walk utilized by PageRank, the stationary occupation
probability here is zero for all nodes due to the presence of
sinks (the relation between our framework and PageRank
is discussed in detail below). This concept can be readily
generalized for a weighted DAG by assuming that the
probability of choosing an outgoing edge is proportional
to the edge’s weight.
It is instructive to complement the above random-walk

approach with an analogy based on genes spreading in
a population. In the context of citation data, consider
vectors of “genetic” composition of papers and assume
that each paper’s vector is obtained by averaging the

vectors of the cited papers (inherited knowledge) and
by adding the paper’s contribution (new knowledge). A
similar model based on genetic composition of scientific
papers has been shown to reproduce many quantitative
features of science [19]. Figure 1 illustrates this process
on a toy network. For example, c6 =

1
3 (c1+ c4+ c5)+e6

where e6 represents contribution of paper 6 which is,
by definition, orthogonal to contribution vectors of all
previous papers. Vectors e1,e2, . . . therefore constitute a
basis of a space of growing dimension. The accumulation
of knowledge is reflected in the lack of normalization of the
composition vectors cx which are of greater magnitude for
recent papers than for old ones. From a correspondence
between all possible paths from x to y and possible
ways in which composition cy can propagate to x, it
is straightforward to show that when the composition
of a paper is written in terms of the base vectors, the
coefficients of the respective base vectors are equal to
the passage probabilities obtained by the random-walk
approach and hence cx =Gx (see fig. 1). We can say
that the previously introduced passage probabilities Gx
represent the influence of past papers on paper x and, at
the same time, the “genetic” composition of paper x.
Given our understanding that Gxy quantifies the influ-

ence of x on y, we may introduce the total aggregate
impact of node x,

Ix =
∑

y

Gxy, (2)

where the number of non-zero terms in the summation is
Px := |Px| (which we refer to as the progeny size of node
x). The value Ix is not meaningful by itself because it is
naturally biased by the size of Px. This makes it sensitive
to the time of the paper’s appearance (old nodes tend to
have greater progenies) and to the amount of literature in
this paper’s research field. It is therefore more informative
to plot Ix vs. Px. A large value of Ix/Px is achieved when
the influence of x is effectively channeled to the papers
in Px: for example when even papers that do not cite
x directly refer mostly to papers citing x. Therefore, we
expect outliers in the plane (Px, Ix) to be seminal papers
which founded new branches of research.
It is illustrative to discuss the relation between the

aggregate impact Ix and the Google PageRank score. To
do that, we combine eqs. (1) and (2) to write Ix as a
solution of the self-consistent equation,

Ix = 1+
∑

y

WyxIy, (3)

where Ix := 1 for all nodes without progeny (i.e., k
in
x = 0).

The structure of this equation resembles that of the clas-
sical PageRank equation. The similarity can be enhanced
further if instead of the “gene” composition spreading
discussed above, we consider its normalized version. This
normalized spreading is achieved by assuming that each
paper’s genetic vector is composed by a fraction (1−α)
of its original contribution plus a fraction α of the aver-
age over its parents’ genetic vectors (thus, the vector’s
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Fig. 2: (Colour on-line) Total influence of papers Ix vs. their
progeny size Px for the APS citation data (for clarity, only 413
papers with Ix > 20+Px/400 are shown). Details about the
marked outliers are given in table 1.

norm is fixed to one for all papers with at least one ances-
tor). Hence we obtain a new matrix of genetic composition,
Gα which in turn can be used to compute new aggregate
impact Iαx . The self-consistent equation for I

α
x now has the

form
Iαx = 1−α+α

∑

y

WyxI
α
y (4)

where Iαx := 1−α for all nodes without progeny. If we
replace 1−α with (1−α)/N (which only affects the over-
all scale of Iαx ), this equation is identical to the equation of
the PageRank: α and 1−α are the probabilities that the
random walk follows an existing link and jumps, respec-
tively, and Iαx is the PageRank value of node x. Since the
term 1−α only sets the scale of Iαx and in the limit α→ 1
the propagation term α

∑
yWyxI

α
y in eq. (4) is equal to

that in eq. (3), we see that rankings of nodes according
to the aggregate impact Ix and the limit PageRank value
limα→1Iαx are equivalent.
Both Ix and I

α
x are naturally biased by the progeny size

of node x. In the case of Iαx , this bias can be partially
removed by setting α< 1 which leads to impact spreading
mainly over a local neighborhood. In the case of Ix,
we remove the bias by placing the nodes in the plane
(Ix, Px) which allows us to better distinguish exceptional
nodes than the one-dimensional PageRank value with one
parameter (α). While PageRank certainly has its merit
for the WWW, in what follows we attempt to show that
influence and impact propagating without damping are
useful for DAGs.
We now illustrate our ideas on the citation data

provided by the American Physical Society (APS). This
data contains all 449705 papers published by the APS
from 1893 to 2009 together with their citations to the
APS journals. To make the data strictly acyclic, we do
not consider a small number of citations that are between
papers of the same print date; we are then left with
4672812 citations. Figure 2 shows all papers published
by the APS after 1940 and reveals an expected linear
relationship between Ix and Px with several outstanding
papers whose influence is much greater than that of other

Fig. 3: (Colour on-line) PageRank with α= 0.5 vs. citation
count (with an older version of the APS data, a similar plot was
already presented in [14]). Outliers from fig. 2 are marked either
with red squares (if they can be considered as outliers also in
this figure) and with blue crosses (if they are not outliers here
—these papers have their number written in bold in table 1).

papers of the same progeny size. (Papers published before
1940 are omitted because of the data sparseness which is
amplified by the limitation of our data to citations to and
from the APS journals.) Table 1 lists the outliers together
with scientific prizes as a proxy for their quality. While
our results are affected by using only the APS citations1,
one can conclude that majority of these outlying papers
really represents exceptional research. While it is not
our goal to rank the papers, one could achieve that for
example by dividing Ix by the average Ix of papers with
the same progeny size Px, thus making papers of different
age comparable.
Outliers in the (Px, Ix)-plane often do not have partic-

ularly high citation counts. When we apply the classical
PageRank algorithm to our data as in [14], we observe than
many of them do not receive high PageRank values. The
differences stem, of course, from differences between the
algorithms. While PageRank is a reputation metric [20]
awarding papers cited by other reputable papers, our
approach focuses on the progeny created by each individ-
ual paper. As a consequence, even a paper which is not
directly cited by popular papers can score high if it estab-
lishes a new research direction or a school of thought. In
this sense, our approach evaluates originality of papers. On
the other hand, interdisciplinary works necessarily focus
the flow of influence less and hence they are not likely to
score high with respect to the Ix/Px criterion.
We finally note that the definition of the PageRank

score Iαx in eq. (4) allows for a meaningful research of
outliers in the (Iαx , k

in
x )-plane (see [14]), similarly as we do

in the (Ix, Px)-plane for the aggregate impact Ix. While

1For example, paper P which is not (to the best of our knowledge)
particularly outstanding owes its high total impact to the fact
that it is the only paper in the APS data cited by the high-
impact paper Q. Since paper Q in reality cites many more papers,
paper P probably would not excel if complete citation data were
used for the analysis (this has been already discussed in [14]).
Similar problems arise for those research fields where the original
work was not published on APS journals (take high-temperature
superconductivity, for example).
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Table 1: An approximately time-ordered list of the papers marked in fig. 2 (labels agree with those marked in the figure). To
evaluate the quality of the list, we indicate the most important prize received by the authors for research pertinent to the
listed papers (LM = Lorentz Medal, NP = Nobel Prize, MPM = Max Planck Medal, DM = Dirac Medal, VNM = John Von
Neumann Medal). Important prizes are rarely awarded soon after a discovery is made and this bias is well visible in our table.
To overcome this, we add an additional distinguishing criterion for prize-free papers: if they are described as pioneering works in
a certain domain on Wikipedia, we mark them with +. The last two columns show the paper’s ranking given by the PageRank
score when α= 0.5 (PR) and the citation count (CR). Bold labels correspond to the papers not detectable as outliers in fig. 3.

Id Title Authors Year Prize PR CR
A Statistics of the Two-Dimensional Ferromagnet. . . H. A. Kramers, G.H. Wannier 1941 LM 54 1 645
B Crystal Statistics in a Two-Dimensional Model. . . L. Onsager 1944 NP 8 87
C Theory of Superconductivity J. Bardeen, et al. 1957 NP 2 10
D The Maser–New Type of Microwave Amplifier,. . . J. Gordon, et al. 1955 NP 369 14 517
E Infrared and Optical Masers A. Schawlow, C. Townes 1958 NP 171 2 108
F Population Inversion and Continuous Optical Maser A. Javan et al. 1961 + 169 14 517
G Dynamical Model of Elementary Particles Based on. . . Y. Nambu, G. Jona-Lasinio 1961 NP 24 50
H Self-Consistent Equations Including Exchange and. . . W. Kohn, L. Sham 1965 NP 1 1
I Inhomogeneous Electron Gas P. Hohenberg, W. Kohn 1964 MPM 3 2
J A Model of Leptons S. Weinberg 1967 NP 6 18
K Static Phenomena Near Critical Points:. . . L. Kadanoff, et al. 1967 MPM 58 355
L Radiative Corrections as the Origin of Spontaneous. . . S. Coleman, E. Weinberg 1973 DM 31 75
M Scaling Theory of Localization:. . . E. Abrahams, et al. 1979 NP 11 24
N New Measurement of the Proton Gyromagnetic Ratio. . . E. R. Williams, P.T. Olsen 1979 150 26 327
O New Method for High-Accuracy Determination of. . . K. Klitzing 1980 NP 32 134
P Cluster Formation in Two-Dimensional Random Walk H. Rosenstock, C. Marquardt 1980 109 217 150
Q Diffusion-Limited Aggregation. . . T. A. Witten, L.M. Sander 1981 + 17 64
R Electronic Structure of BaPb1−XBiXO3 L. F. Mattheiss, D.R. Hamann 1983 106 4 224
S Bulk Superconductivity at 36K in La1.8Sr0.2CuO4 R. J. Cava et al. 1987 37 1 086
T Evidence for Superconductivity above 40K In. . . C. W. Chu et al. 1987 40 606
U Superconductivity at 93K in a New Mixed-Phase. . . M. K. Wu et al. 1987 + 19 102
V Self-Organized Criticality: An Explanation of. . . P. Bak et al. 1987 + 16 47
a Teleporting an Unknown Quantum State via. . . C. H. Bennett et al. 1993 + 53 26
b Bose-Einstein Condensation in a Gas of Sodium Atoms K. B. Davis et al. 1995 NP 63 27
c Evidence of Bose-Einstein Condensation in. . . C. C. Bradley et al. 1995 + 99 51
d TeV Scale Superstring and Extra Dimensions G. Shiu, S.-H.H. Tye 1998 216 3 991
e Small-World Networks: Evidence for a Crossover Picture M. Barthélémy, L.A.N. Amaral 1999 + 658 9 872
f Negative Refraction Makes a Perfect Lens J. B. Pendry 2000 DM 279 192
g Composite Medium with Simultaneously Negative. . . D. R. Smith et al. 2000 + 433 459
h Statistical Mechanics of Complex Networks R. Albert, A.-L. Barabási 2002 VNM 112 59

some papers appear as outliers in both planes, there are
some significant differences which further demonstrate
the distinction between our evaluation metric and the
PageRank (see fig. 3). These differences, marked with
bold letters in table 1, correspond to relatively recent
but seminal papers, suggesting that our method is more
effective in removing the inherent time bias of citation
data discussed above.
After showing that our concept of influence quantified

by the G matrix has its merit, we use it to evaluate
similarity of papers. The basic idea is that papers x and
y are similar if they are influenced by the same works
(they have similar “genetic” composition). To evaluate
this similarity we take

S∗(x, y) =
∑

i

√
GixGiy. (5)

It is also possible to base the similarity on min{Gix, Giy}
or GixGiy, for example —we present here the choice

performing best in our numerical tests. Note that this
similarity is not normalized: its lower bound is zero but
the upper bound is bounded only by Ax ∩Ay. We stress
that S∗ is parameter free and hence practical to use.
The standard way to evaluate a similarity metric is to

test how well it is able to reproduce missing links in a
network [21,22]. In practice this means that small part of
links (usually 10%) is removed from the network and one
attempts to guess the removed links by seeing which simi-
lar nodes are not connected. A similarity metric which is
able to “repair” well the network presumably captures well
the network’s structure and one may use it also for other
purposes than link prediction. In the case of our similarity
metric S∗, we adopt a slightly different approach: we test
how many good recommendations it is able to provide to
selected individuals. This change is motivated by potential
practical use of such recommendations for scientists who
often face the problem of searching for relevant literature
in their research field [23].
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Our tests are done as follows. We first divide the data
in two parts: papers published until year 2003 (the sample
set —it contains approximately 75% of all papers) and
those published after 2003 (the probe set). Then we find
20 most-cited articles published in each core APS journal
in 2003 (we consider seven journals: Phys. Rev. Lett.,
Rev. Mod. Phys. and Phys. Rev. A–E ) and take their
last authors if they published at least one paper with the
APS after 2003. Recommendations are made for each test
author separately on the basis of papers published by this
author in 2003. Denoting the set of papers published by
author α in 2003 as Uα, the recommendation score of paper
x is given by its similarity with all y in this set,

rx =
∑

y∈Uα
S∗(x, y). (6)

Papers that have not been cited by author α until 2003
are then sorted according to their score in a descending
order and those at the top represent personalized recom-
mendation for this author.
Resulting recommendations are evaluated using the

probe set which allows us to label as “relevant” those
papers that were eventually cited by a given author after
2003. To curb the level of noise in the results, we discard
authors with less than 10 relevant papers to be guessed.
Then we are left with the final set of 99 test authors
who have on average 116 relevant items to be guessed
out of almost 340 000 papers published until 2003. To
assess the recommendations, we use metrics often used
in the field of recommender systems [16]: i) precision P100
(the fraction of the top 100 places of the recommendation
list occupied by the relevant papers), ii) recall R100 (the
fraction of the relevant papers appearing at the top
100 places of the recommendation list), iii) the average
ranking of the relevant papers qR (expressed as a fraction
of all potentially relevant papers), and iv) the fraction
of the relevant papers with non-zero score fR. A good
recommendation list should have relevant papers at the
top, i.e., high P100 and R100 and low qR, and it should
assign non-zero scores to most relevant papers, e.g., high
fR (all these quantities lie in the range [0, 1]).
To test our similarity, we compare its performance in

a recommendation process with other similarity metrics.
Based on results presented in [22], we have selected
three highly performing metrics: the Common Neighbors
similarity (CN), the Resource Allocation Index (RA), and
the Katz-based similarity (KA). Since they are all defined
on undirected networks, we evaluate them assuming that
all links in our data are undirected. CN simply counts the
number of common neighbors for a pair of nodes. RA does
the same but it values less common neighbors with many
connections,

SRA(x, y) =
∑

z∈Γ(x)∩Γ(y)
|Γ(z)|−1, (7)

where Γ(x) is the set of direct neighbors of node x. We
finally employ a commonly used similarity, KA, which
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Fig. 4: (Colour on-line) Precision and recall (a) and average
ranking of relevant items and fraction of ranked relevant items
(b) for SKA (red symbols, dotted lines), S∗ (blue symbols,
solid lines) and SRA (black symbols, dashed lines). SKA shows
a strong dependency on the maximal distance with best P100
and R100 achieved when the maximal distance is 3. However,
qR is only 0.79 at this point which means that at this level of
truncation, it represents a transition between local and global
similarity metrics. When all powers of A are included, SKA

performs poorly with respect to all measured characteristics
but fR. By contrast, the performance of S

∗ decreases only
slightly when the maximal distance is above eight.

counts the number of paths between two given nodes with
individual paths weighted exponentially less according to
their length (this similarity has a close relation with the
Katz centrality measure [24]). Denoting the network’s
adjacency matrix with A, KA can be written in the form
of a series,

SKA(x, y) =
∞∑

i=1

βi(Ai)xy. (8)

In our case, we use β = 0.75 which yields slightly superior
performance. Local similarities SCN and SRA are compu-
tationally considerably less demanding than global (based
on the whole network) similarities S∗ and SKA. For prac-
tical reasons, we limit the computation of S∗ to papers
that are not more than six steps from both x and y. For
SKA, we limit its summation to the order A12 (see fig. 4
for how these restrictions affect the results).
Similarities described above can be substituted for

S∗(x, y) in eq. (6), leading to recommendations which can
be in turn compared with those obtained with S∗. Test
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results can be found in fig. 4 where we plot performances
of different algorithms vs. the maximal distance used
to compute global similarities. Results for the Resource
Allocation Index are indicated with flat lines, while results
for the Common Neighbor similarity are omitted because
they are always worse than for RA. In general we see a
good performance of SRA with respect to precision and
recall. This is because local metrics rank only a small
set of papers (local neighborhoods) where there is a high
probability of finding relevant papers. The drawback is
that only a minor part of relevant papers is found (fR ≈
0.4) and their average ranking is poor (qR ≈ 0.3).
At the same time, global metrics S∗ and SKA are able

to rank almost all relevant objects and achieve much
lower average ranking, but they pay for this enhanced
“variety” with worse performance at top places of their
recommendation lists. When the maximal distance of five
or more is considered (which is necessary for making
SKA a truly global similarity metric with fR ≈ 1, S∗
significantly outperforms SKA and, from the point of
view of recommendation, provides a good compromise
between global and local metrics. This is despite the fact
that SKA and SRA are computed on undirected data
which gives them access to more information: they assign
similarity also to nodes with overlapping progeny, not only
to those with overlapping ancestors as S∗ does. Further
tests show that if we prevent SRA(x, y) from accessing
this information, its precision and recall decrease to 0.104
and 0.124, respectively which is comparable to the results
obtained with S∗. We may conclude that S∗ is a reliable
similarity metric which is able to compete with other
known metrics.
In conclusion, our results unveil the value of the passage

probability in random walks on DAGs. On the example of
scientific citations we showed that it allows us to quantify
the influence of a given paper (node) on the others, to
identify seminal and innovative papers (i.e., instrumental
nodes of the network), and to introduce a similarity
metric whose performance is comparable with that of
other state-of-the-art metrics. In this letter, we aimed
at simplicity and hence we did not consider additional
effects that may have impact on the interpretation of the
analyzed citation data. For example, we did not consider
that every paper relies on general knowledge which is,
however, never cited. To reflect that, one could for example
add an artificial node referred by every other node in
the network and repeat the same analysis as we did.
Further, similarly as for PageRank [25], our framework
also lends itself to generalizations based on assigning
past citations with lower weights to better reflect current
relevance or, more generally, trends. We believe that
our framework might prove useful well beyond citation
networks as it opens possibilities for the investigation
of asymmetric interactions in DAGs by exploiting their
intrinsic acyclic nature. The presented ideas and tools
can be readily applied to citation networks related to any
kind of intellectual production such as patents and legal

cases. Similar networks of dependency relations can also be
found in biology (phylogenetic networks and food webs, for
example) as well as in other systems that can be mapped
into a DAG, where individuation of fundamental nodes
and estimation of dependency relations within the graph
can be useful and non-trivial tasks.
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