448 research outputs found

    High pressure melting of eclogite and metasomatism of garnet peridotites from Monte Duria Area (Central Alps, N Italy): A proxy for melt-rock reaction during subduction

    Get PDF
    In the Monte Duria area (Adula-Cima Lunga unit, Central Alps, N Italy) garnet peridotites occur in direct contact with migmatised orthogneiss (Mt. Duria) and eclogites (Borgo). Both eclogites and ultramafic rocks share a common high pressure (HP) peak at 2.8\u202fGPa and 750\u202f\ub0C and post-peak static equilibration at 0.8\u20131.0\u202fGPa and 850\u202f\ub0C. Garnet peridotites show abundant amphibole, dolomite, phlogopite and orthopyroxene after olivine, suggesting that they experienced metasomatism by crust-derived agents enriched in SiO2, K2O, CO2 and H2O. Peridotites also display LREE fractionation (La/Nd\u202f=\u202f2.4) related to LREE-rich amphibole and clinopyroxene grown in equilibrium with garnet, indicating that metasomatism occurred at HP conditions. At Borgo, retrogressed garnet peridotites show low strain domains characterised by garnet compositional layering, cut by a subsequent low-pressure (LP) chlorite foliation, in direct contact with migmatised eclogites. Kfs\u202f+\u202fPl\u202f+\u202fQz\u202f+\u202fCpx interstitial pocket aggregates and Cpx\u202f+\u202fKfs thin films around symplectites after omphacite parallel to the Zo\u202f+\u202fOmp\u202f+\u202fGrt foliation in the eclogites suggest that they underwent partial melting at HP. The contact between garnet peridotites and eclogites is marked by a tremolitite layer. The same rock also occurs as layers within the peridotite lens, showing a boudinage parallel to the garnet layering of peridotites, flowing in the boudin necks. This clearly indicates that the tremolitite boudins formed when peridotites were in the garnet stability field. Tremolitites also show Phl\u202f+\u202fTc\u202f+\u202fChl\u202f+\u202fTr pseudomorphs after garnet, both crystallised in a static regime postdating the boudins formation, suggesting that they derive from a garnet-bearing precursor. Tremolitites have Mg#\u202f>\u202f0.90 and Al2O3\u202f=\u202f2.75\u202fwt% pointing to ultramafic compositions but also show enrichments in SiO2, CaO, and LREE suggesting that they formed after the reaction between the eclogite-derived melt and the garnet peridotite at HP. To test this hypothesis, we performed a thermodynamic modelling at fixed P\u202f=\u202f3\u202fGPa and T\u202f=\u202f750\u202f\ub0C to model the chemical interaction between the garnet peridotite and the eclogite-derived melt. Our results show that this interaction produces an Opx\u202f+\u202fCpx\u202f+\u202fGrt assemblage plus Amp\u202f+\u202fPhl, depending on the water activity in the melt, suggesting that tremolitites likely derive from a previous garnet websterite with amphibole and phlogopite. Both peridotites and tremolitites also show a selective enrichment in LILE recorded by amphiboles in the spinel stability field, indicating that a fluid-assisted metasomatic event occurred at LP conditions, leading to the formation of a chlorite foliation post-dating the garnet layering in peridotites, and the retrogression of Grt-websterites in tremolitites. The Monte Duria area is a unique terrane where we can observe syn-deformation eclogite-derived melt interacting with garnet peridotite at HP, proxy of subduction environments

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms

    Water Masses Variability in Inner Kongsfjorden (Svalbard) During 2010–2020

    Get PDF
    Kongsfjorden is an Arctic fjord located in the Svalbard archipelago. Its hydrography is influenced by the warm and saline Atlantic Water (AW) in the West Spitsbergen Current and the cold and fresh Polar Water circulating on the shelf. We assess the so-called atlantification of Kongsfjorden in the 2010–2020 decade by inspecting modifications in water properties and water masses variability through moored data and summer CTD surveys. Atlantification in this fjord has emerged as an increasing temperature and salinity, resulting from enhanced advection of Atlantic waters from the West Spitsbergen Current. The water column in inner Kongsfjorden warmed by 0.13°C/yr at 35 m and 0.06°C/yr at 85 m depth from 2010 to 2020, while salinity increased by 0.3 PSU. Depth-averaged temperatures have increased by 0.26°C/yr in the warmest months of the year, whereas they appear relatively stable in the coldest months. Both temperature and salinity present a linear regression change point in January 2017, with latter years featuring decreasing values. Highly diluted AW is found at the beginning of the decade, which give way to more and more pure AW in latter years, culminating in extensive intrusions in 2016 and 2017 determining the warmest and saltiest conditions over the decade in inner Kongsfjorden. Observations in the 2010–2020 decade confirm that Kongsfjorden has transitioned to an Atlantic-type fjord, featuring depleted sea ice conditions and rather regular shallow intrusions of AW in summer and frequently also in winter. Although single intrusions of AW are associated with dynamical events on the shelf, we found that the long-term temperature evolution in the inner Kongsfjord is consistent with the meridional temperature transport of the West Spitsbergen Current. The AW current flowing northward from lower latitudes along the western Svalbard archipelago thus has profoundly driven local conditions in the inner fjord in this decade

    Influence of distributary channels on sediment and organic matter supply in event-dominated coastal margins: the Po prodelta as a study case

    Get PDF
    From November 2008 through May 2009, the Po river (Italy) experienced several floods exceeding 5000 m<sup>3</sup> s<sup>−1</sup>. This long series of events ended with a large flood in early May 2009 (~8000 m<sup>3</sup> s<sup>−1</sup>). An event-response sampling was carried out in the Po prodelta in April–May 2009 to characterize the preservation of this series of floods in the sediment record and to describe the event-supply and deposition of riverborne particulate material during the May 2009 flood. The water sampling was carried out early in the event under conditions of moderate river flow (~5000 m<sup>3</sup> s<sup>−1</sup>) and 24 h later during the peak discharge (~8000 m<sup>3</sup> s<sup>−1</sup>). Sediment cores were collected in the prodelta before and after the peak flood. At each station, profiles of conductivity, transmittance, and fluorescence were acquired. Surface and bottom waters were sampled to collect sediments in suspension. In addition, a few days before the May 2009 event, suspended sediments were collected at Pontelagoscuro gauging station, ~90 km upstream from the coast. Biogeochemical compositions and sedimentological characteristics of suspended and sediment samples were investigated using bulk and biomarker analyses. Furthermore, <sup>7</sup>Be and radiographs were used to analyze the internal stratigraphy of sediment cores. <br><br> During moderate flow, the water column did not show evidence of plume penetration. Stations re-occupied 24 h later exhibited marked physical and biogeochemical changes during the peak flood. However, the concentration of terrestrially-derived material in surface waters was still less than expected. These results suggested that, since material enters the Adriatic as buoyancy-driven flow with a reduced transport capacity, settling and flocculation processes result in trapping a significant fraction of land-derived material in shallow sediments and/or within distributary channels. <br><br> Although numerous discharge peaks occurred from November 2008 through April 2009 (4000–6000 m<sup>3</sup> s<sup>−1</sup>), sediment cores collected in late April 2009 showed lack of event-strata preservation and reduced <sup>7</sup>Be penetrations. This suggested that only a small fraction of the sediment supply during ordinary events reaches the deepest region of the prodelta (12–20 m water depth). As a result, these event-strata have a thickness not sufficient to be preserved in the sediment record because of post-depositional processes that destroy the flood signal. <br><br> Stations in the northern and central prodelta were re-occupied after the peak of the May 2009 flood. Based on <sup>7</sup>Be and radiographs, we estimated event layers of 17 and 6 cm thickness, respectively. Selective trapping of coarse material occurred in the central prodelta likely because of the geomorphologic setting of the central outlet characterized by an estuary-like mouth. Despite these settling processes, lignin-based parameters indicated that the composition of the terrigenous OC was fairly homogenous throughout the network of channels and between size-fractions

    Probiotics in Orthopedics: From Preclinical Studies to Current Applications and Future Perspective

    Get PDF
    In recent years, probiotics have been emerging as an attractive therapeutic strategy for several diseases. In orthopedics, probiotics seem to be a promising supplementation for treatment of osteoporosis, osteoarthritis, muscle loss-related disease, wound and ulcer issues, and prevention of surgical antibiotic prophylaxis side effects. Although probiotics are still not included in guidelines for these conditions, several studies have reported theoretical benefits of their administration. Further high-level clinical trials are necessary to convert research into solid clinical practice. However, probiotics represent a cost-effective future perspective and may play a role in association with traditional orthopedic therapies

    Multi-year particle fluxes in Kongsfjorden, Svalbard

    Get PDF
    Abstract. High-latitude regions are warming faster than other areas due to reduction of snow cover and sea ice loss and changes in atmospheric and ocean circulation. The combination of these processes, collectively known as polar amplification, provides an extraordinary opportunity to document the ongoing thermal destabilisation of the terrestrial cryosphere and the release of land-derived material into the aquatic environment. This study presents a 6-year time series (2010–2016) of physical parameters and particle fluxes collected by an oceanographic mooring in Kongsfjorden (Spitsbergen, Svalbard). In recent decades, Kongsfjorden has been experiencing rapid loss of sea ice coverage and retreat of local glaciers as a result of the progressive increase in ocean and air temperatures. The overarching goal of this study was to continuously monitor the inner fjord particle sinking and to understand to what extent the temporal evolution of particulate fluxes was linked to the progressive changes in both Atlantic and freshwater input. Our data show high peaks of settling particles during warm seasons, in terms of both organic and inorganic matter. The different sources of suspended particles were described as a mixing of glacier carbonate, glacier siliciclastic and autochthonous marine input. The glacier releasing sediments into the fjord was the predominant source, while the sediment input by rivers was reduced at the mooring site. Our time series showed that the seasonal sunlight exerted first-order control on the particulate fluxes in the inner fjord. The marine fraction peaked when the solar radiation was at a maximum in May–June while the land-derived fluxes exhibited a 1–2-month lag consistent with the maximum air temperature and glacier melting. The inter-annual time-weighted total mass fluxes varied by 2 orders of magnitude over time, with relatively higher values in 2011, 2013, and 2015. Our results suggest that the land-derived input will remarkably increase over time in a warming scenario. Further studies are therefore needed to understand the future response of the Kongsfjorden ecosystem alterations with respect to the enhanced release of glacier-derived material
    • …
    corecore